题目内容
正项数列{an}满足.
(1)求数列{an}的通项公式an;
(2)令,求数列{bn}的前n项和Tn.
已知a,b,c分别为△ABC三个内角A,B,C的对边,a=bsinA-acosB.
(1)求B;
(2)若b=2,△ABC的面积为,求a,c.
入射光线沿直线x-2y+3=0射向直线l:y=x,被l反射后的光线所在直线的方程是( )
A.2x+y-3=0 B.2x-y-3=0 C.2x+y+3=0 D.2x-y+3=0
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
已知变量x、y满足约束条件 则的取值范围是 .
已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆截得的弦长为AB,以AB为直径的圆经过原点.若存在,写出直线l的方程;若不存在,说明理由.
函数的反函数为 .
直线的倾斜角的范围是 .(为任意实数)
在一次某地区中学联合考试后,汇总了3217名文科考生的数学成绩,用表示,我们将不低于120的考分叫“优分”,将这些数据按右图的程序框图进行信息处理,则输出的数据为这3217名考生的( )
A.平均分
B.“优分”人数
C.“优分”率
D.“优分”人数与非“优分”人数的比值