题目内容
已知:△ABC中,BC=1,AC=
,sinC=2sinA
(1)求AB的值.
(2)求sin(2A-
)的值.
| 5 |
(1)求AB的值.
(2)求sin(2A-
| π |
| 4 |
(1)在△ABC中,∵sinC=2sinA
∴由正弦定理得AB=2BC
又∵BC=1
∴AB=2
(2)在△ABC中,∵AB=2,BC=1,AC=
∴AB2+BC2=AC2∴△ABC是Rt△且∠ABC=90°
∴sinA=
,cosA=
∴sin(2A-
)=sin2A•cos
-cos2Asin
=
(2sinAcosA-cos2A+sin2A)
=
(2×
×
-
+
)
=
∴由正弦定理得AB=2BC
又∵BC=1
∴AB=2
(2)在△ABC中,∵AB=2,BC=1,AC=
| 5 |
∴sinA=
| ||
| 5 |
2
| ||
| 5 |
∴sin(2A-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| ||
| 2 |
=
| ||
| 2 |
| ||
| 5 |
2
| ||
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
=
| ||
| 10 |
练习册系列答案
相关题目