题目内容
设f(x)=asin(πx+α)+bcos(πx+β)+4(a、b、α、β是常数)且f(2 004)=5,则f(2 005)等于( )A.1 B.3 C.5 D.7
解析:f(2 004)=asinα+bcosβ+4=5,
∴asinα+bcosβ=1.
∴f(2 005)=-asinα-bcosβ+4=-1+4=3.
故选B.
答案:B
练习册系列答案
相关题目
题目内容
设f(x)=asin(πx+α)+bcos(πx+β)+4(a、b、α、β是常数)且f(2 004)=5,则f(2 005)等于( )A.1 B.3 C.5 D.7
解析:f(2 004)=asinα+bcosβ+4=5,
∴asinα+bcosβ=1.
∴f(2 005)=-asinα-bcosβ+4=-1+4=3.
故选B.
答案:B