题目内容

已知数列{an}中,a1=1,且an=
n
n-1
an-1+2n•3n-2
(n≥2,n∈N*).
(I)求a2,a3的值及数列{an}的通项公式;
(II)令bn=
3n-1
an
(n∈N*)
,数列{bn}的前n项和为Sn,试比较S2n与n的大小;
(III)令cn=
an+1
n+1
(n∈N*)
,数列{
2cn
(cn-1)2
}
的前n项和为Tn,求证:对任意n∈N*,都有Tn<2.
(I)当n=2时,a2=
2
2-1
a2-1+2•2•32-2=2+4=6

当n=3时,a3=
3
3-1
a3-1+2•3•33-2=9+18=27

因为an=
n
n-1
an-1+2n•3n-2
,所以
an
n
=
an-1
n-1
+2•3n-2

当n≥2时,由累加法得
an
n
-
a1
1
=2+2×3+2×32+…+2×3n-2

因为a1=1,所以n≥2时,有
an
n
=1+
2(1-3n-1)
1-3
=3n-1
,即an=n•3n-1(n≥2)
又n=1时,a1=1•31-1=1
an=n•3n-1(n∈N*)
(II)n∈N*时,bn=
3n-1
an
=
1
n
,则S2n=1+
1
2
+
1
3
+…+
1
2n

记函数f(n)=S2n-n=(1+
1
2
+
1
3
+…+
1
2n
)-n

所以f(n+1)=(1+
1
2
+
1
3
+…+
1
2n+1
)-(n+1)

f(n+1)-f(n)=(
1
2n+1
+
1
2n+2
+…+
1
2n+1
)-1<
2n
2n+1
-1<
0.
所以f(n+1)<f(n).
由于f(1)=S21-1=(1+
1
2
)-1>0
,此时S21>1f(2)=S22-2=(1+
1
2
+
1
3
+
1
4
)-2>0

此时S22>2f(3)=S23-3=(1+
1
2
+
1
3
+
1
4
+
1
5
+
1
6
+
1
7
+
1
8
)-3<0
,此时S23<3
由于f(n+1)<f(n),故n≥3时,f(n)≤f(3)<0,此时S2n<n
综上所述,当n=1,2时,S2n>n;当n≥3(n∈N*)时,S2n<n
(III)证明:对于cn=
an+1
n+1
=3n
,有
2cn
(cn-1)2
=
3n
(3n-1)2

当n≥2时,
3n
(3n-1)2
3n
(3n-1)(3n-3)
=
3n-1
(3n-1)(3n-1-1)
=
1
3n-1-1
-
1
3n-1

所以当n≥2时,Tn=
3
2
+
32
(32-1)2
+…+
3n
(3n-1)2
3
2
+(
1
2
-
1
32-1
)+(
1
32-1
-
1
33-1
)
+…+(
1
3n-1-1
-
1
3n-1
)=2-
1
3n-1
<2

T1=
3
2
<2

故对n∈N*,Tn<2得证.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网