题目内容
已知数列{an}中,a1=1,且an=
an-1+2n•3n-2(n≥2,n∈N*).
(I)求a2,a3的值及数列{an}的通项公式;
(II)令bn=
(n∈N*),数列{bn}的前n项和为Sn,试比较S2n与n的大小;
(III)令cn=
(n∈N*),数列{
}的前n项和为Tn,求证:对任意n∈N*,都有Tn<2.
| n |
| n-1 |
(I)求a2,a3的值及数列{an}的通项公式;
(II)令bn=
| 3n-1 |
| an |
(III)令cn=
| an+1 |
| n+1 |
| 2cn |
| (cn-1)2 |
(I)当n=2时,a2=
a2-1+2•2•32-2=2+4=6,
当n=3时,a3=
a3-1+2•3•33-2=9+18=27.
因为an=
an-1+2n•3n-2,所以
=
+2•3n-2.
当n≥2时,由累加法得
-
=2+2×3+2×32+…+2×3n-2,
因为a1=1,所以n≥2时,有
=1+
=3n-1,即an=n•3n-1(n≥2).
又n=1时,a1=1•31-1=1,
故an=n•3n-1(n∈N*).
(II)n∈N*时,bn=
=
,则S2n=1+
+
+…+
.
记函数f(n)=S2n-n=(1+
+
+…+
)-n,
所以f(n+1)=(1+
+
+…+
)-(n+1).
则f(n+1)-f(n)=(
+
+…+
)-1<
-1<0.
所以f(n+1)<f(n).
由于f(1)=S21-1=(1+
)-1>0,此时S21>1;f(2)=S22-2=(1+
+
+
)-2>0,
此时S22>2;f(3)=S23-3=(1+
+
+
+
+
+
+
)-3<0,此时S23<3;
由于f(n+1)<f(n),故n≥3时,f(n)≤f(3)<0,此时S2n<n.
综上所述,当n=1,2时,S2n>n;当n≥3(n∈N*)时,S2n<n.
(III)证明:对于cn=
=3n,有
=
.
当n≥2时,
≤
=
=
-
.
所以当n≥2时,Tn=
+
+…+
≤
+(
-
)+(
-
)+…+(
-
)=2-
<2.
且T1=
<2.
故对n∈N*,Tn<2得证.
| 2 |
| 2-1 |
当n=3时,a3=
| 3 |
| 3-1 |
因为an=
| n |
| n-1 |
| an |
| n |
| an-1 |
| n-1 |
当n≥2时,由累加法得
| an |
| n |
| a1 |
| 1 |
因为a1=1,所以n≥2时,有
| an |
| n |
| 2(1-3n-1) |
| 1-3 |
又n=1时,a1=1•31-1=1,
故an=n•3n-1(n∈N*).
(II)n∈N*时,bn=
| 3n-1 |
| an |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
记函数f(n)=S2n-n=(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
所以f(n+1)=(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+1 |
则f(n+1)-f(n)=(
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+1 |
| 2n |
| 2n+1 |
所以f(n+1)<f(n).
由于f(1)=S21-1=(1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
此时S22>2;f(3)=S23-3=(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 8 |
由于f(n+1)<f(n),故n≥3时,f(n)≤f(3)<0,此时S2n<n.
综上所述,当n=1,2时,S2n>n;当n≥3(n∈N*)时,S2n<n.
(III)证明:对于cn=
| an+1 |
| n+1 |
| 2cn |
| (cn-1)2 |
| 2×3n |
| (3n-1)2 |
当n≥2时,
| 2×3n |
| (3n-1)2 |
| 2×3n |
| (3n-1)(3n-3) |
| 2×3n-1 |
| (3n-1)(3n-1-1) |
| 1 |
| 3n-1-1 |
| 1 |
| 3n-1 |
所以当n≥2时,Tn=
| 3 |
| 2 |
| 2×32 |
| (32-1)2 |
| 2×3n |
| (3n-1)2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 32-1 |
| 1 |
| 32-1 |
| 1 |
| 33-1 |
| 1 |
| 3n-1-1 |
| 1 |
| 3n-1 |
| 1 |
| 3n-1 |
且T1=
| 3 |
| 2 |
故对n∈N*,Tn<2得证.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|