题目内容
12.在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)•sin(A+B),则△ABC的形状为等腰或直角三角形.分析 先利用三角函数的和角公式化左边=2R(sinAcosB-cosAsinB),再利用余弦化成三角形边的关系化简已知等式“(a2+b2)sin(A-B)=(a2-b2)sinC,”,得到a2=b2或a2+b2=c2,从而得出该三角形是等腰三角形或直角三角形.
解答 解:∵2Rsin(A-B)=2R(sinAcosB-cosAsinB)=2RsinAcosB-2RsinBcosA=a•$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$-b•$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{a}^{2}-{b}^{2}}{c}$,
∴已知等式变形得:(a2+b2)•$\frac{{a}^{2}-{b}^{2}}{2Rc}$=(a2-b2)•$\frac{c}{2R}$,
∴a2=b2或a2+b2=c2,
则△ABC是等腰三角形或直角三角形.
故答案为:等腰或直角三角形.
点评 此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目
7.下列四组函数中,表示相同函数的一组是( )
| A. | f(x)=1,g(x)=$\frac{x}{x}$ | B. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$ | ||
| C. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | D. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 |
17.设集合P{x|x>9},Q={x|x2>4},则下列结论正确的是( )
| A. | P=Q | B. | P∪Q=R | C. | P?Q | D. | Q?P |