题目内容
如图,在△ABC中,
,
,则过点C,以A、H为两焦点的双曲线的离心率为
- A.2
- B.3
- C.

- D.

A
分析:如图,利用图中焦点三角形AHC,结合双曲线的离心率的定义,充分利用直角三角形的几何性质,即可求得双曲线的离心率.
解答:
解:如图,∵
,
∴tanC=
,
∴在焦点三角形AHC中,有:
,CH=2c,且
,
∴双曲线的离心率为2,
故选A.
点评:本题考查结合双曲线的离心率的定义,圆锥曲线中的离心率反映了圆锥曲线的形状,也反映了圆锥曲线上的点到焦点和到准线的距离的关系,充分利用直角三角形的几何性质,即可求得双曲线的离心率.
分析:如图,利用图中焦点三角形AHC,结合双曲线的离心率的定义,充分利用直角三角形的几何性质,即可求得双曲线的离心率.
解答:
∴tanC=
∴在焦点三角形AHC中,有:
∴双曲线的离心率为2,
故选A.
点评:本题考查结合双曲线的离心率的定义,圆锥曲线中的离心率反映了圆锥曲线的形状,也反映了圆锥曲线上的点到焦点和到准线的距离的关系,充分利用直角三角形的几何性质,即可求得双曲线的离心率.
练习册系列答案
相关题目
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|