题目内容
(2012•安徽模拟)已知数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n,记所有可能的乘积aiaj(1≤i≤j≤n)的和为Tn.
(1)求{an}的通项公式;
(2)求Tn的表达式;
(3)求证:
<
+
+
+…+
<
.
(1)求{an}的通项公式;
(2)求Tn的表达式;
(3)求证:
| n-1 |
| 4 |
| T1 |
| T2 |
| T2 |
| T3 |
| T3 |
| T4 |
| Tn |
| Tn+1 |
| n |
| 4 |
分析:(1)由数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n,知
+
+
+…+
=n,由迭代法能求出an=2n.
(2)由aiaj(1≤i≤j≤n)的和为Tn,知Tn=a1a1+(a1a2+a2a2)+(a1a3+a2a3+a3a3)+…+(a1an+a2an+a3an+…+anan)=(23-22)+(25-23)+…+(22n+1-2n+1),由此能求出Tn的表达式.
(3)由
=
=
<
,知
+
+
+…+
<
+
+
+…+
=
,由
=
=
-
•
>
-
•
=
-
,知
+
+
+…+
>(
-
)+(
-
)+…+(
-
)=
-(
-
)>
,由此能够证明
<
+
+
+…+
<
.
| a1 |
| 2 |
| a2 |
| 22 |
| a3 |
| 23 |
| an |
| 2n |
(2)由aiaj(1≤i≤j≤n)的和为Tn,知Tn=a1a1+(a1a2+a2a2)+(a1a3+a2a3+a3a3)+…+(a1an+a2an+a3an+…+anan)=(23-22)+(25-23)+…+(22n+1-2n+1),由此能求出Tn的表达式.
(3)由
| Tn |
| Tn+1 |
| ||
|
| 2n-1 |
| 4(2n-1)+3 |
| 1 |
| 4 |
| T1 |
| T2 |
| T2 |
| T3 |
| T3 |
| T4 |
| Tn |
| Tn+1 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| n |
| 4 |
| Tn |
| Tn+1 |
| 2n-1 |
| 2n+2-1 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 3•2n+2n-1 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 3•2n |
| 1 |
| 4 |
| 1 |
| 2 n+2 |
| T1 |
| T2 |
| T2 |
| T3 |
| T3 |
| T4 |
| Tn |
| Tn+1 |
| 1 |
| 4 |
| 1 |
| 2 3 |
| 1 |
| 4 |
| 1 |
| 2 4 |
| 1 |
| 4 |
| 1 |
| 2 n+2 |
| n |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 n+2 |
| n-1 |
| 4 |
| n-1 |
| 4 |
| T1 |
| T2 |
| T2 |
| T3 |
| T3 |
| T4 |
| Tn |
| Tn+1 |
| n |
| 4 |
解答:解:(1)∵数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n,
∴
+
+
+…+
=n,
当n=1时,a1=2.
当n≥2时,
+
+
+…+
=n,
+
+
+…+
=n-1,
两式相减,得
=1,
∴an=2n.
(2)∵aiaj(1≤i≤j≤n)的和为Tn,
∴Tn=a1a1+(a1a2+a2a2)+(a1a3+a2a3+a3a3)+…+(a1an+a2an+a3an+…+anan)
=(23-22)+(25-23)+(27-24)+…+(22n+1-2n+1)
=
-(2n+2-4)
=
(2n+1-1)(2n-1).
(3)∵
=
=
=
<
,
∴
+
+
+…+
<
+
+
+…+
=
,
∵
=
=
-
•
=
-
•
>
-
•
=
-
,
∴
+
+
+…+
>(
-
)+(
-
)+…+(
-
)
=
-(
+
+… +
)
=
-(
-
)>
,
∴
<
+
+
+…+
<
.
∴
| a1 |
| 2 |
| a2 |
| 22 |
| a3 |
| 23 |
| an |
| 2n |
当n=1时,a1=2.
当n≥2时,
| a1 |
| 2 |
| a2 |
| 22 |
| a3 |
| 23 |
| an |
| 2n |
| a1 |
| 2 |
| a2 |
| 2 2 |
| a3 |
| 23 |
| an-1 |
| 2n-1 |
两式相减,得
| an |
| 2n |
∴an=2n.
(2)∵aiaj(1≤i≤j≤n)的和为Tn,
∴Tn=a1a1+(a1a2+a2a2)+(a1a3+a2a3+a3a3)+…+(a1an+a2an+a3an+…+anan)
=(23-22)+(25-23)+(27-24)+…+(22n+1-2n+1)
=
| 23-22n+3 |
| 1-4 |
=
| 4 |
| 3 |
(3)∵
| Tn |
| Tn+1 |
| ||
|
=
| 2n-1 |
| 2n+2-1 |
=
| 2n-1 |
| 4(2n-1)+3 |
| 1 |
| 4 |
∴
| T1 |
| T2 |
| T2 |
| T3 |
| T3 |
| T4 |
| Tn |
| Tn+1 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| n |
| 4 |
∵
| Tn |
| Tn+1 |
| 2n-1 |
| 2n+2-1 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2n+2-1 |
=
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 3•2n+2n-1 |
>
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 3•2n |
=
| 1 |
| 4 |
| 1 |
| 2 n+2 |
∴
| T1 |
| T2 |
| T2 |
| T3 |
| T3 |
| T4 |
| Tn |
| Tn+1 |
| 1 |
| 4 |
| 1 |
| 2 3 |
| 1 |
| 4 |
| 1 |
| 2 4 |
| 1 |
| 4 |
| 1 |
| 2 n+2 |
=
| n |
| 4 |
| 1 |
| 2 3 |
| 1 |
| 2 4 |
| 1 |
| 2 n+2 |
=
| n |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 n+2 |
| n-1 |
| 4 |
∴
| n-1 |
| 4 |
| T1 |
| T2 |
| T2 |
| T3 |
| T3 |
| T4 |
| Tn |
| Tn+1 |
| n |
| 4 |
点评:本题考查数列通项公式的求法和不等式的证明,考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目