ÌâÄ¿ÄÚÈÝ
£¨2013•½ËÕһ죩£¨1£©É½Ë®³ÇÊÐÕò½ÓС°Èýɽ¡±--½ðɽ¡¢½¹É½¡¢±±¹Ìɽ£¬Ò»Î»ÓοÍÓÎÀÀÕâÈý¸ö¾°µãµÄ¸ÅÂʶ¼ÊÇ0.5£¬ÇÒ¸ÃÓοÍÊÇ·ñÓÎÀÀÕâÈý¸ö¾°µãÏ໥¶ÀÁ¢£¬ÓæαíʾÕâλÓοÍÓÎÀÀµÄ¾°µãÊýºÍûÓÐÓÎÀÀµÄ¾°µãÊý²îµÄ¾ø¶ÔÖµ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨2£©Ä³³ÇÊÐÓÐn£¨nÎªÆæÊý£¬n¡Ý3£©¸ö¾°µã£¬Ò»Î»ÓοÍÓÎÀÀÿ¸ö¾°µãµÄ¸ÅÂʶ¼ÊÇ0.5£¬ÇÒ¸ÃÓοÍÊÇ·ñÓÎÀÀÕân¸ö¾°µãÏ໥¶ÀÁ¢£¬ÓæαíʾÕâλÓοÍÓÎÀÀµÄ¾°µãÊýºÍûÓÐÓÎÀÀµÄ¾°µãÊý²îµÄ¾ø¶ÔÖµ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
£¨2£©Ä³³ÇÊÐÓÐn£¨nÎªÆæÊý£¬n¡Ý3£©¸ö¾°µã£¬Ò»Î»ÓοÍÓÎÀÀÿ¸ö¾°µãµÄ¸ÅÂʶ¼ÊÇ0.5£¬ÇÒ¸ÃÓοÍÊÇ·ñÓÎÀÀÕân¸ö¾°µãÏ໥¶ÀÁ¢£¬ÓæαíʾÕâλÓοÍÓÎÀÀµÄ¾°µãÊýºÍûÓÐÓÎÀÀµÄ¾°µãÊý²îµÄ¾ø¶ÔÖµ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö£º£¨1£©ÓοÍÓÎÀÀ¾°µã¸öÊýΪ0£¬1£¬2£¬3£¬¦Î¿ÉÄÜȡֵΪ£º1£¬3£¬¦Î=1±íʾÓÎÀÀÒ»¸ö¾°µã»òÓÎÀÀÁ½¸ö¾°µã£¬¦Î=3±íʾÓÎÀÀ¾°µãÊýΪ0»òÓÎÀÀÁËÈý¸ö¾°µã£¬¸ù¾Ýn´Î¶ÀÁ¢Öظ´ÊÔÑéÖÐʼþ·¢ÉúkµÄ¸ÅÂʹ«Ê½¼´¿ÉÇóµÃP£¨¦Î=1£©£¬P£¨¦Î=3£©£¬½ø¶øµÃµ½·Ö²¼ÁÐºÍÆÚÍû£»
£¨2£©µ±n=2k+1£¬k¡ÊN*ʱ£¬ÓοÍÓÎÀÀ¾°µã¸öÊý¿ÉÄÜΪ£º0£¬1£¬2£¬¡£¬2k+1£¬Ôò¦Î¿ÉÄÜȡֵΪ£º1£¬3£¬5£¬¡£¬2k+1£®¸ù¾Ý¶ÀÁ¢Öظ´ÊÔÑéÖÐʼþA·¢Éúk´ÎµÄ¸ÅÂʼÆË㹫ʽÇó³ö¦ÎÈ¡¸÷ÖµÊǵĸÅÂÊ£¬±íʾ³öE¦Î=£¨2k+1-0£©¡Á2¡Á(
)2k+1
+[£¨2k+1-1£©-1]¡Á2¡Á
(
)2k+1+[£¨2k+1-2£©-2]¡Á2¡Á
(
)2k+1+¡+[2k+1-k£©-k]¡Á2¡Á
(
)2k+1£¬·Ö×éºóÀûÓÃÐÔÖÊ
=n
£¨i=1£¬2£¬3£¬¡£¬n£©¶ÔÉÏʽ¼´¿É½øÐл¯¼ò£¬×îºóÔÙ»»Îªn¼´¿É£»
£¨2£©µ±n=2k+1£¬k¡ÊN*ʱ£¬ÓοÍÓÎÀÀ¾°µã¸öÊý¿ÉÄÜΪ£º0£¬1£¬2£¬¡£¬2k+1£¬Ôò¦Î¿ÉÄÜȡֵΪ£º1£¬3£¬5£¬¡£¬2k+1£®¸ù¾Ý¶ÀÁ¢Öظ´ÊÔÑéÖÐʼþA·¢Éúk´ÎµÄ¸ÅÂʼÆË㹫ʽÇó³ö¦ÎÈ¡¸÷ÖµÊǵĸÅÂÊ£¬±íʾ³öE¦Î=£¨2k+1-0£©¡Á2¡Á(
| 1 |
| 2 |
| C | 0 2k+1 |
| C | 1 2k+1 |
| 1 |
| 2 |
| C | 2 2k+1 |
| 1 |
| 2 |
| C | k 2k+1 |
| 1 |
| 2 |
| iC | i n |
| C | i-1 n-1 |
½â´ð£º½â£º£¨1£©ÓοÍÓÎÀÀ¾°µã¸öÊýΪ0£¬1£¬2£¬3£¬¦Î¿ÉÄÜȡֵΪ£º1£¬3£¬
P£¨¦Î=1£©=
(
)2(1-
)+
(
)1(1-
)2=2
(
)3=
£¬
P£¨¦Î=3£©=
(
)3+
(
)3=2
(
)3=
£¬
¦ÎµÄ·Ö²¼ÁÐΪ£º

ËùÒÔE¦Î=1¡Á
+3¡Á
=
£®
£¨2£©µ±n=2k+1£¬k¡ÊN*ʱ£¬ÓοÍÓÎÀÀ¾°µã¸öÊý¿ÉÄÜΪ£º0£¬1£¬2£¬¡£¬2k+1£¬
¦Î¿ÉÄÜȡֵΪ£º1£¬3£¬5£¬¡£¬2k+1£®
P£¨¦Î=1£©=
(
)k(1-
)k+1+
(
)k+1(1-
)k=2¡Á(
)2k+1
£»
P£¨¦Î=3£©=
(
)k-1(1-
)k+2+
(
)k+2(1-
)k-1=2¡Á(
)2k+1
£»
¡
P£¨¦Î=2k+1£©=
(
)0(1-
)2k+1+
(
)2k+1(1-
)0=2¡Á(
)2k+1
£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

¡àE¦Î=£¨2k+1-0£©¡Á2¡Á(
)2k+1
+[£¨2k+1-1£©-1]¡Á2¡Á
(
)2k+1+[£¨2k+1-2£©-2]¡Á2¡Á
(
)2k+1+¡+[2k+1-k£©-k]¡Á2¡Á
(
)2k+1
=2¡Á(
)2k+1{[£¨2k+1£©
+2k
+£¨2k-1£©
+¡+£¨2k+1-k£©
]-[£¨0¡Á
+1
+2¡Á
+¡+k
]}
=2¡Á(
)2k+1{[£¨2k+1£©¡Á
+2k¡Á
+£¨2k-1£©¡Á
+¡+£¨k+1£©
]-[0¡Á
+1¡Á
+¡+k
]}£¬
¡ß
=n
£¨i=1£¬2£¬3£¬¡£¬n£©£¬
E¦Î=2¡Á(
)2k+1{£¨2k+1£©¡Á[
+¡
]-£¨2k+1£©¡Á[
+¡
]}
=2¡Á(
)2k+1¡Á£¨2k+1£©¡Á[£¨
+¡
£©-£¨
+¡+
£©]
=2¡Á(
)2k+1¡Á£¨2k+1£©¡Á
=
£®
´ð£º¦ÎµÄÊýѧÆÚÍûE¦ÎΪ
£®
P£¨¦Î=1£©=
| C | 2 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| C | 1 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| C | 1 3 |
| 1 |
| 2 |
| 3 |
| 4 |
P£¨¦Î=3£©=
| C | 3 3 |
| 1 |
| 2 |
| C | 3 3 |
| 1 |
| 2 |
| C | 3 3 |
| 1 |
| 2 |
| 1 |
| 4 |
¦ÎµÄ·Ö²¼ÁÐΪ£º
ËùÒÔE¦Î=1¡Á
| 3 |
| 4 |
| 1 |
| 4 |
| 3 |
| 2 |
£¨2£©µ±n=2k+1£¬k¡ÊN*ʱ£¬ÓοÍÓÎÀÀ¾°µã¸öÊý¿ÉÄÜΪ£º0£¬1£¬2£¬¡£¬2k+1£¬
¦Î¿ÉÄÜȡֵΪ£º1£¬3£¬5£¬¡£¬2k+1£®
P£¨¦Î=1£©=
| C | k 2k+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| C | k+1 2k+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| C | k 2k+1 |
P£¨¦Î=3£©=
| C | k-1 2k+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| C | k+2 2k+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| C | k-1 2k+1 |
¡
P£¨¦Î=2k+1£©=
| C | 0 2k+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| C | 2k+1 2k+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| C | 0 2k+1 |
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
¡àE¦Î=£¨2k+1-0£©¡Á2¡Á(
| 1 |
| 2 |
| C | 0 2k+1 |
| C | 1 2k+1 |
| 1 |
| 2 |
| C | 2 2k+1 |
| 1 |
| 2 |
| C | k 2k+1 |
| 1 |
| 2 |
=2¡Á(
| 1 |
| 2 |
| C | 0 2k+1 |
| C | 1 2k+1 |
| C | 2 2k+1 |
| C | k 2k+1 |
| C | 0 2k+1 |
| ¡ÁC | 1 2k+1 |
| C | 2 2k+1 |
| •C | k 2k+1 |
=2¡Á(
| 1 |
| 2 |
| C | 2k+1 2k+1 |
| C | 2k 2k+1 |
| C | 2k-1 2k+1 |
| ¡ÁC | k+1 2k+1 |
| C | 0 2k+1 |
| C | 1 2k+1 |
| •C | k 2k+1 |
¡ß
| iC | i n |
| C | i-1 n-1 |
E¦Î=2¡Á(
| 1 |
| 2 |
| C | 2k 2k |
| +C | 2k-1 2k |
| +C | k 2k |
| C | 0 2k |
| +C | 1 2k |
| +C | k-1 2k |
=2¡Á(
| 1 |
| 2 |
| C | 2k 2k |
| +C | 2k-1 2k |
| +C | k 2k |
| C | 0 2k |
| +C | 1 2k |
| C | k-1 2k |
=2¡Á(
| 1 |
| 2 |
| C | k 2k |
=
|
n-1 |
´ð£º¦ÎµÄÊýѧÆÚÍûE¦ÎΪ
|
n-1 |
µãÆÀ£º±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÆÚÍû£¬¿¼²én´Î¶ÀÁ¢Öظ´ÊÔÑéÖÐʼþA·¢ÉúkµÄ¸ÅÂʼÆË㹫ʽ£¬¿¼²é×éºÏÊýÐÔÖÊÓ¦Ó㬿¼²éѧÉú×ÛºÏÔËÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±¾Ìâ×ÛºÏÐÔÇ¿£¬ÄÜÁ¦ÒªÇó¸ß£¬ÊôÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿