搜索
题目内容
已知函数
,其中
是自然对数的底数,
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)当
时,试确定函数
的零点个数,并说明理由.
试题答案
相关练习册答案
(Ⅰ)
的单调减区间为
;单调增区间为
;(Ⅱ)详见解析.
试题分析:(Ⅰ)求导得,
,因为
,所以
的解集为
,即单调递增区间;
的解集为
,即单调递减区间;(Ⅱ)函数
,令
,得
,显然
是一个零点,记
,求导得
,易知
时
递减;
时
递增,故
的最小值
,又
,故
,即
,所以函数
的零点个数1个.
试题解析:(Ⅰ)解:因为
,
,所以
.
令
,得
.当
变化时,
和
的变化情况如下:
↘
↗
故
的单调减区间为
;单调增区间为
.
(Ⅱ)解:结论:函数
有且仅有一个零点. 理由如下:
由
,得方程
, 显然
为此方程的一个实数解.
所以
是函数
的一个零点. 当
时,方程可化简为
.设函数
,则
,令
,得
.
当
变化时,
和
的变化情况如下:
↘
↗
即
的单调增区间为
;单调减区间为
.所以
的最小值
.
因为
,所以
,所以对于任意
,
,因此方程
无实数解.所以当
时,函数
不存在零点.综上,函数
有且仅有一个零点. 考点:
练习册系列答案
自主训练系列答案
自主学习指导课程系列答案
自主创新作业系列答案
认知规律训练法系列答案
钟书金牌期末冲刺100分系列答案
重难点突破训练系列答案
万唯中考预测卷系列答案
初中英语听力课堂系列答案
周测月考单元评价卷系列答案
中学生英语随堂演练及单元要点检测题系列答案
相关题目
已知函数
.
(Ⅰ)若
,求函数
的单调区间和极值;
(Ⅱ)设函数
图象上任意一点的切线
的斜率为
,当
的最小值为1时,求此时切线
的方程.
已知a,b为常数,a¹0,函数
.
(1)若a=2,b=1,求
在(0,+∞)内的极值;
(2)①若a>0,b>0,求证:
在区间[1,2]上是增函数;
②若
,
,且
在区间[1,2]上是增函数,求由所有点
形成的平面区域的面积.
已知函数
,
(其中
为常数);
(Ⅰ)如果函数
和
有相同的极值点,求
的值;
(Ⅱ)设
,问是否存在
,使得
,若存在,请求出实数
的取值范围;若不存在,请说明理由.
(Ⅲ)记函数
,若函数
有5个不同的零点,求实数
的取值范围.
已知函数
(
为常数),其图象是曲线
.
(1)当
时,求函数
的单调减区间;
(2)设函数
的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点
为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
已知函数
,f '(x)为f(x)的导函数,若f '(x)是偶函数且f '(1)=0.
⑴求函数
的解析式;
⑵若对于区间
上任意两个自变量的值
,都有
,求实数
的最小值;
⑶若过点
,可作曲线
的三条切线,求实数
的取值范围.
某连锁分店销售某种商品,每件商品的成本为
元,并且每件商品需向总店交
元的管理费,预计当每件商品的售价为
元时,一年的销售量为
万件.
(1)求该连锁分店一年的利润
(万元)与每件商品的售价
的函数关系式
;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润
最大,并求出
的最大值.
定义在R上的函数
满足:
恒成立,若
,则
与
的大小关系为 ( )
A.
B.
C.
D.
与
的大小关系不确定
若点P是函数
图象上任意一点,且在点P处切线的倾斜角为
,则
的最小值是( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案