题目内容

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)证明:对一切正整数n,xn+1≤xn的充要条件是x1≥2
(Ⅲ)若x1=4,记an=lg
xn+2xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式.
分析:(1)先对函数f(x)=x2-4进行求导,进而可得到过曲线上点(x0,f(x0))的切线方程,然后令y=0得到关系式xn2+4=2xnxn+1,整理即可得到答案.

(2)先由xn+1≤xn得到x2≤x1,再结合(1)中的结果可得到
x1
2
+
2
x1
x1
,最后根据x1>0可得到必要性的证明;
xn+1=
xn
2
+
2
xn
用数学归纳法可证明xn+1≤xn对一切正整数n成立.

(3)先由xn+1=
xn
2
+
2
xn
得到xn+1+2=
(xn+2)2
2xn
xn+1-2=
(xn-2)2
2xn
,然后两式相除可得到
xn+1+2
xn+1-2
=(
xn+2
xn-2
)2
后再两边取对数,求得an+1=2an,进而可知数列{an}成等比数列,根据等比数列的通项公式求得an,代入an=lg
xn+2
xn-2
即可求得数列{xn}的通项公式.
解答:解:(Ⅰ)由题可得f′(x)=2x
所以过曲线上点(x0,f(x0))的切线方程为y-f(xn)=f′(xn)(x-xn),
即y-(xn-4)=2xn(x-xn
令y=0,得-(xn2-4)=2xn(xn+1-xn),即xn2+4=2xnxn+1
显然xn≠0∴xn+1=
xn
2
+
2
xn


(Ⅱ)证明:(必要性)
若对一切正整数n,xn+1≤xn,则x2≤x1,即
x1
2
+
2
x1
x1
,而x1>0,∴x12≥4,即有x1≥2
(充分性)若x1≥2>0,由xn+1=
xn
2
+
2
xn

用数学归纳法易得xn>0,从而xn+1=
xn
2
+
2
xn
≥2
xn
2
2
xn
=2(n≥1)
,即xn≥2(n≥2)
又x1≥2∴xn≥2(n≥2)
于是xn+1-xn=
xn
2
+
2
xn
-xn=
4-xn2
2xn
=
(2-xn)(2+xn)
2xn
≤0

即xn+1≤xn对一切正整数n成立

(Ⅲ)由xn+1=
xn
2
+
2
xn
,知xn+1+2=
(xn+2)2
2xn
,同理,xn+1-2=
(xn-2)2
2xn

xn+1+2
xn+1-2
=(
xn+2
xn-2
)2

从而lg
xn+1+2
xn+1-2
=2lg
xn+2
xn-2
,即an+1=2an
所以,数列{an}成等比数列,故an=2n-1a1=2n-1lg
x1+2
x1-2
=2n-1lg3

lg
xn+2
xn-2
=2n-1lg3
,从而
xn+2
xn-2
=32n-1
所以xn=
2(32n-1+1)
32n-1-1
点评:本题综合考查数列、函数、不等式、导数应用等知识,以及推理论证、计算及解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网