题目内容
过双曲线
-
=1(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||
B、
| ||
| C、2 | ||
D、
|
分析:根据OM⊥PF,且FM=PM判断出△POF为等腰直角三角形,推断出∠OFP=45°,进而在Rt△OFM中求得半径a和OF的关系,进而求得a和c的关系,则双曲线的离心率可得.
解答:解:∵OM⊥PF,且FM=PM
∴OP=OF,
∴∠OFP=45°
∴|0M|=|OF|•sin45°,即a=c•
∴e=
=
故选A
∴OP=OF,
∴∠OFP=45°
∴|0M|=|OF|•sin45°,即a=c•
| ||
| 2 |
∴e=
| c |
| a |
| 2 |
故选A
点评:本题主要考查了双曲线的简单性质.解题的关键是利用圆的切线的性质和数形结合的数学思想的运用.
练习册系列答案
相关题目
过双曲线
-
=1的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、y=±
| ||||
B、y=±
| ||||
C、y=±
| ||||
D、y=±
|