题目内容

10.定义在R上的函数f(x),对任意x1,x2∈R(x1≠x2),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则(  )
A.f(3)<f(1)<f(2)B.f(1)<f(2)<f(3)C.f(2)<f(1)<f(3)D.f(3)<f(2)<f(1)

分析 由条件得出函数f(x)在R上单调递减,由此得出结论.

解答 解:由定义在R上的函数f(x),对任意x1,x2∈R(x1≠x2),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
可得函数f(x)在R上单调递减.
故有f(3)<f(2)<f(1),
故选:D.

点评 本题主要考查函数的单调性的性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网