题目内容

已知四棱锥P-ABCD的正视图是一个底边长为4、腰长为3的等腰三角形,图1、图2分别是四棱锥P-ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P-ABCD的侧面PAB的面积.
分析:(1)根据三视图形状可得侧面PDC⊥平面ABCD,结合矩形ABCD中AD⊥CD,由面面垂直的性质得AD⊥侧面PDC.再根据线面垂直的性质,结合PC?侧面PDC可证出AD⊥PC;
(2)取CD的中点E,连接PE、AE.由三视图的形状并结合面面垂直、线面垂直的性质,算出PA=PB=
13
,最后在△PAB中利用正、余弦定理可算出△PAB的面积,即得侧面PAB的面积.
解答:解:(1)根据三视图,可得侧面PDC⊥平面ABCD
∵AD⊥CD,侧面PDC∩平面ABCD=CD,AD?平面ABCD
∴AD⊥侧面PDC
∵PC?侧面PDC,∴AD⊥PC;
(2)取CD的中点E,连接PE、AE,
∵根据三视图,得△PCD中,PD=PC=3,CD=4
∴PE=
32-22
=
5

Rt△ADE中,AD=DE=2,可得AE=
AD2+DE2
=2
2

∵侧面PDC⊥平面ABCD,侧面PDC∩平面ABCD=CD,
PE?侧面PDC,PE⊥CD
∴PE⊥平面ABCD,结合AE?平面ABCD,可得AE⊥PE
因此,Rt△PAE中,PA=
AE2+PE2
=
13
.同理可得PB=
13

∴△PAB中,cos∠APB=
PA2+PB2-AB2
2PA•PB 
=
5
13

由同角三角函数的关系,得sin∠APB=
1-(
5
13
)
2
=
12
13

∴S△PAB=
1
2
PA•PBsin∠APB=
1
2
×
13
×
13
×
12
13
=6
即侧面PAB的面积为6.
点评:本题给出三视图,要求我们证明线线垂直并求侧面三角形的面积,着重考查了三视图求面积和面面垂直、线面垂直的性质定理等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网