题目内容
已知角A,B,C为△ABC的三个内角,其对边分别为a,b,c,若
=(-cos
,sin
),
=(cos
,sin
),a=2
,且
•
=
.
(1)若△ABC的面积S=
,求b+c的值.
(2)求b+c的取值范围.
| m |
| A |
| 2 |
| A |
| 2 |
| n |
| A |
| 2 |
| A |
| 2 |
| 3 |
| m |
| n |
| 1 |
| 2 |
(1)若△ABC的面积S=
| 3 |
(2)求b+c的取值范围.
(1)∵
=(-cos
,sin
),
=(cos
,sin
),
且
•
=(-cos
,sin
)•(cos
,sin
)=-cos2
+sin2
=-cosA=
,
即-cosA=
,又A∈(0,π),∴A=
….(3分) 又由S△ABC=
bcsinA=
,所以bc=4.
由余弦定理得:a2=b2+c2-2bc•cos
=b2+c2+bc,∴16=(b+c)2,故 b+c=4.…(7分)
(2)由正弦定理得:
=
=
=
=4,又B+C=π-A=
,
∴b+c=4sinB+4sinC=4sinB+4sin(
-B)=4sin(B+
),
∵0<B<
,则
<B+
<
,则
<sin(B+
)≤1,
即b+c的取值范围是(2
,4]. …(12分)
| m |
| A |
| 2 |
| A |
| 2 |
| n |
| A |
| 2 |
| A |
| 2 |
且
| m |
| n |
| A |
| 2 |
| A |
| 2 |
| A |
| 2 |
| A |
| 2 |
| A |
| 2 |
| A |
| 2 |
| 1 |
| 2 |
即-cosA=
| 1 |
| 2 |
| 2π |
| 3 |
| 1 |
| 2 |
| 3 |
由余弦定理得:a2=b2+c2-2bc•cos
| 2π |
| 3 |
(2)由正弦定理得:
| b |
| sinB |
| c |
| sinC |
| a |
| sinA |
2
| ||
sin
|
| π |
| 3 |
∴b+c=4sinB+4sinC=4sinB+4sin(
| π |
| 3 |
| π |
| 3 |
∵0<B<
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| ||
| 2 |
| π |
| 3 |
即b+c的取值范围是(2
| 3 |
练习册系列答案
相关题目