ÌâÄ¿ÄÚÈÝ
£¨Àí£©¸ù¾Ýͳ¼Æ×ÊÁÏ£¬Ä³¹¤ÒÕÆ·³§Ã¿ÈÕ²úÆ··ÏÆ·ÂÊpÓëÈÕ²úÁ¿x£¨¼þ£©Ö®¼ä½üËÆµØÂú×ã¹ØÏµÊ½p=
(x¡ÊN£¬1¡Üx¡Ü58)£¨ÈÕ²úÆ··ÏÆ·ÂÊ=
£©£®ÒÑ֪ÿÉú²úÒ»¼þÕýÆ·¿ÉÓ®Àû2ǧԪ£¬¶øÉú²úÒ»¼þ·ÏÆ·Ôò¿÷Ëð1ǧԪ£®¸Ã³µ¼äµÄÈÕÀûÈóT°´ÕÕÈÕÕýÆ·Ó®Àû¶î¼õÈ¥ÈÕ·ÏÆ·¿÷Ëð¶î¼ÆË㣮
£¨1£©½«¸Ã³µ¼äÈÕÀûÈóT£¨Ç§Ôª£©±íʾΪÈÕ²úÁ¿x£¨¼þ£©µÄº¯Êý£»
£¨2£©µ±¸Ã³µ¼äµÄÈÕ²úÁ¿Îª¶àÉÙ¼þʱ£¬ÈÕÀûÈó¶î×î´ó£¿×î´óÈÕÀûÈó¶îÊǼ¸Ç§Ôª£¿
| 2 |
| 10-x |
| ÈÕ·ÏÆ·(¼þ)Êý |
| ÈÕ²úÁ¿(¼þ)Êý |
£¨1£©½«¸Ã³µ¼äÈÕÀûÈóT£¨Ç§Ôª£©±íʾΪÈÕ²úÁ¿x£¨¼þ£©µÄº¯Êý£»
£¨2£©µ±¸Ã³µ¼äµÄÈÕ²úÁ¿Îª¶àÉÙ¼þʱ£¬ÈÕÀûÈó¶î×î´ó£¿×î´óÈÕÀûÈó¶îÊǼ¸Ç§Ôª£¿
£¨Àí£©£¨1£©ÓÉÓÚ³µ¼äµÄÈÕÀûÈóT°´ÕÕÈÕÕýÆ·Ó®Àû¶î¼õÈ¥ÈÕ·ÏÆ·¿÷Ëð¶î¼ÆË㣮¹ÊT=2x(1-p)-x•p•1=
(x¡ÊN£¬1¡Üx¡Ü8)£»
£¨2£©Áî10-x=t£¬Ôò2¡Üt¡Ü9£¬t¡ÊN£¬T=2[13-(t+
)]£¬
ÒòΪt+
¡Ý2
£¬µ±ÇÒ½öµ±t=
£¬¼´t=
ʱȡµÈºÅ£®¶øt¡ÊN£¬
ËùÒÔµ±t=5»òt=6ʱ£¬t+
ÓÐ×îСֵ11£¬
´Ó¶øTÓÐ×î´óÖµ4£¬´Ëʱ£¬x=4»ò5
¼´³µ¼äµÄÉú²úÁ¿¶¨Îª4¼þ£¨»ò5¼þ£©Ê±£¬¸Ã³µ¼ä¿É»ñµÃ×î´óÀûÈó4ǧԪ£®
| 14x-2x2 |
| 10-x |
£¨2£©Áî10-x=t£¬Ôò2¡Üt¡Ü9£¬t¡ÊN£¬T=2[13-(t+
| 30 |
| t |
ÒòΪt+
| 30 |
| t |
| 30 |
| 39 |
| t |
| 30 |
ËùÒÔµ±t=5»òt=6ʱ£¬t+
| 30 |
| t |
´Ó¶øTÓÐ×î´óÖµ4£¬´Ëʱ£¬x=4»ò5
¼´³µ¼äµÄÉú²úÁ¿¶¨Îª4¼þ£¨»ò5¼þ£©Ê±£¬¸Ã³µ¼ä¿É»ñµÃ×î´óÀûÈó4ǧԪ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
£¨07ÄêÈ«¹ú¾í¢ñÀí£©Ä³É̳¡¾ÏúijÉÌÆ·£¬¸ù¾ÝÒÔÍù×ÊÁÏͳ¼Æ£¬¹Ë¿Í²ÉÓõĸ¶¿îÆÚÊý
µÄ·Ö²¼ÁÐΪ
| 1 | 2 | 3 | 4 | 5 |
| P | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
É̳¡¾ÏúÒ»¼þ¸ÃÉÌÆ·£¬²ÉÓÃ1ÆÚ¸¶¿î£¬ÆäÀûÈóΪ200Ôª£»·Ö2ÆÚ»ò3ÆÚ¸¶¿î£¬ÆäÀûÈóΪ250Ôª£»·Ö4ÆÚ»ò5ÆÚ¸¶¿î£¬ÆäÀûÈóΪ300Ôª£¬
±íʾ¾ÏúÒ»¼þ¸ÃÉÌÆ·µÄÀûÈó¡£
£¨¢ñ£©ÇóʼþA£º¡°¹ºÂò¸ÃÉÌÆ·µÄ3λ¹Ë¿ÍÖУ¬ÖÁÉÙÓÐ1λ²ÉÓÃ1ÆÚ¸¶¿î¡±µÄ¸ÅÂÊ
£»
£¨¢ò£©Çó
µÄ·Ö²¼Áм°ÆÚÍû
¡£