题目内容
【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
被选中且
未被选中的概率.
参加书法社团 | 未参加书法社团 | |
参加演讲社团 | 8 | 5 |
未参加演讲社团 | 2 | 30 |
(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1 , A2 , A3 , A4 , A5 , 3名女同学B1 , B2 , B3 . 现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
【答案】解答:(1)
;(2)![]()
【解析】(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有4530=15人,所以从该班级随机选1名同学,该同学至少参加上述一个社团的概率为P=
=![]()
(2从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:![]()
![]()
![]()
共15个。
根据题意,这些基本事件的出现是等可能的
事件“
被选中且
未被选中”所包含的基本事件有:
, 共2个
因此被
选中且
未被选中的概率为P=![]()
【考点精析】关于本题考查的随机事件,需要了解在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件才能得出正确答案.
【题目】(2015·新课标I卷)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yi=1;2…8数据作了初步处理,得到下面的散点图及一些统计量的值.![]()
|
|
|
|
|
|
|
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中wi=
,
=![]()
(1)根据散点图判断,y=a+bx与y=c+d
,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(2)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x , y的关系为z=0.2y-x,根据(II)的结果回答下列问题:
(i)当年宣传费x=90时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),……,(un,vn),其回归线v=
的斜率和截距的最小二乘估计分别为:![]()
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
x |
|
| |||
| 0 | 5 | -5 | 0 |
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数
的解析式;
(Ⅱ)将
图象上所有点向左平行移动
个单位长度,得到
的图象. 若
图象的一个对称中心为
,求
的最小值.