题目内容

【题目】设函数f(x)=sinxcosx将 f(x)的图象向右平移 (0<φ<π) 个单位,得到y=g(x)图象且g(x)的一条对称轴是直线x=
(1)求φ;
(2)求函数y=g(x)的单调增区间.

【答案】
(1)解:f(x)= sin2x,g(x)= sin(2x﹣φ)

∵x= 是函数y=g(x)图象的对称轴.

∴sin(2× ﹣φ)=±1, ﹣φ=kπ+ ,k∈Z.

∵0<φ<π,∴φ=


(2)解:由(1)知φ= ,因此y=sin(2x﹣ ).

由题意得2kπ﹣ ≤2x﹣ ≤2kπ+ ,k∈Z.

∴函数y=sin(2x﹣ )的单调增区间为[kπ+ ,kπ+ ],k∈Z


【解析】(1)由已知利用平移变换规律可求g(x)= sin(2x﹣φ),由sin(2× ﹣φ)=±1,可求 ﹣φ=kπ+ ,k∈Z,结合范围0<φ<π,即可得解φ的值.(2)由2kπ﹣ ≤2x﹣ ≤2kπ+ ,k∈Z,即可解得函数y=sin(2x﹣ )的单调增区间.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网