题目内容

经过A(2,0),以(2cosθ-2,sinθ)为方向向量的直线与经过B(-2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ.
(I)求点M(x,y)的轨迹方程;
(II)设(I)中轨迹为曲线C,,若曲线C内存在动点P,使得|PF1|、|OP|、|PF2|成等比数列(O为坐标原点),求的取值范围.
【答案】分析:(I)根据题意知,∥(2cosθ-2,sinθ),根据共线向量定理可得⇒(x-2)sinθ=y(2cosθ-2),同理(x+2)sinθ=y(2cosθ+2),两式相乘,即可得到点M(x,y)的轨迹方程;
(II)设p(x,y)在曲线C内,得,再由|PF1|、|OP|、|PF2|成等比数列可得
并代入求得,即可求得结果.
解答:解:(I),(2-x)sinθ+y(2cosθ-2)=0⇒(x-2)sinθ=y(2cosθ-2)①
同理(-2-x)sinθ+y(2cosθ+2)=0⇒(x+2)sinθ=y(2cosθ+2)②
①×②得x2-4=-4y2

(II)设p(x,y),则

化简得:
④代入③得


点评:此题是个中档题.考查向量在几何中的应用,以及数列与解析几何的综合.同时考查学生灵活应用知识分析解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网