题目内容
【题目】在棱长为
的正方体
中,
分别是
的中点,过
三点的平面与正方体的下底面相交于直线
;
![]()
(1)画出直线
;
(2)设
求
的长;
(3)求D到
的距离.
【答案】(1)见解析;(2)
;(3)![]()
【解析】
(1)根据正方体的几何特征,连接DM并延长交D1A1的延长线于Q.连接NQ,即可得到满足条件的直线l;
(2)若l∩A1B1=P,即QN∩A1B1=P,易根据三角形全等的性质得到A1是QD1的中点.进而求出PB1的长;
(3)作D1H⊥l于H,连接DH,根据正方体的几何特征,易得DH⊥l,即DH的长就是D到l的距离.解Rt△QD1N即可得到答案.
(1)连结DM并延长交D1A1的延长线于Q,连结NQ,则NQ所在直线即为所求的直线
.
![]()
(2)设QN
A1B1=P,∵AM=A1M,∠AMD=∠A1MQ, ∠DAM=∠QA1M,易证得
,所以
,即A1是QD1的中点.
(3)作
于H,连接
,可证明
,
则
的长就是D到
的距离.
在
中,两直角边
,
斜边QN=
.
所以
,所以
,![]()
即D到
的距离为
.
练习册系列答案
相关题目