题目内容
5.在四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=2$\sqrt{3}$,AD=2,则四边形ABCD的面积是4.分析 作辅作线,构造直角三角形,根据题中所给的条件,在直角三角形中解题,根据角的正弦值与三角形边的关系,可求出各边的长,然后四边形ABCD的面积.
解答
解:如图,分别延长CD,BA交于点E.
∵∠DAB=135°,
∴∠EAD=∠C=∠E=45°,
∴BE=BC=2,AD=ED=2,
∴四边形ABCD的面积=S△EBC-S△ADE=$\frac{1}{2}$BC•BE-$\frac{1}{2}$AD•DE,
=$\frac{1}{2}$×2 $\sqrt{3}$×2$\sqrt{3}$-$\frac{1}{2}$×2×2,
=6-2,
=4.
故答案为:4
点评 本题通过“割补法”求图形的面积,是解决不规则图形面积问题的基本方法.
练习册系列答案
相关题目
19.函数$f(x)=Asin(ωx+φ),(ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分图象如图所示,则A,ω,φ的值分别是( )
| A. | 1,$2,-\frac{π}{6}$ | B. | 2,$2,-\frac{π}{3}$ | C. | 1,$4,-\frac{π}{6}$ | D. | 2,$4,\frac{π}{3}$ |