题目内容
已知tan(α+
)=
.
(Ⅰ)求tanα的值;
(Ⅱ)求2sin2α-sin(π-α)sin(
-α)+sin2(
+α)的值.
| π |
| 4 |
| 1 |
| 3 |
(Ⅰ)求tanα的值;
(Ⅱ)求2sin2α-sin(π-α)sin(
| π |
| 2 |
| 3π |
| 2 |
(Ⅰ)∵tan(α+
)=
=
,∴tanα=-
.
(Ⅱ)原式=2sin2α-sinαcosα+cos2α
=
=
=
=
.
| π |
| 4 |
| tanα+1 |
| 1-tanα |
| 1 |
| 3 |
| 1 |
| 2 |
(Ⅱ)原式=2sin2α-sinαcosα+cos2α
=
| 2sin2α-sinαcosα+cos2α |
| sin2α+cos2α |
| 2tan2α-tanα+1 |
| tan2α+1 |
2×(-
| ||||
(-
|
| 8 |
| 5 |
练习册系列答案
相关题目