题目内容
不查表求sin220°+cos280°+
sin20°cos80°的值.
解法一: sin220°+cos280°+
sin20°cos80°
=
(1-cos40°)+
(1+cos160°)+
sin20°cos80°
=1-
cos40°+
cos160°+
sin20°cos(60°+20°)
=1-
cos40°+
(cos120°cos40°-sin120°sin40°)
+
sin20°(cos60°cos20°-sin60°sin20°)
=1-
cos40°-
cos40°-
sin40°+
sin40°-
sin220°
=1-
cos40°-
(1-cos40°)= 
解法二: 设x=sin220°+cos280°+
sin20°cos80°
y=cos220°+sin280°-
cos20°sin80°,
则x+y=1+1-
sin60°=
,
x-y=-cos40°+cos160°+
sin100°
=-2sin100°sin60°+
sin100°=0
∴x=y=
,即x=sin220°+cos280°+
sin20°cos80°=
.
=
=1-
=1-
+
=1-
=1-
解法二: 设x=sin220°+cos280°+
y=cos220°+sin280°-
则x+y=1+1-
x-y=-cos40°+cos160°+
=-2sin100°sin60°+
∴x=y=
练习册系列答案
相关题目