题目内容
设正数数列{an}的前n项和Sn满足Sn=
(an+1)2.
(I)求数列{an}的通项公式;
(II)设bn=
,求数列{bn}的前n项和Tn.
| 1 |
| 4 |
(I)求数列{an}的通项公式;
(II)设bn=
| 1 |
| an•an+1 |
(Ⅰ)当n=1时,a1=S1=
(a1+1)2,
∴a1=1.(2分)
∵Sn=
(an+1)2,①
∴Sn-1=
(an-1+1)2(n≥2).②
①-②,得an=Sn-Sn-1=
(an+1)2-
(an-1+1)2,
整理得,(an+an-1)(an-an-1-2)=0,(5分)
∵an>0
∴an+an-1>0.
∴an-an-1-2=0,即an-an-1=2(n≥2).(7分)
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.(9分)
(Ⅱ)∵bn=
=
=
(
-
),(11分)
∴Tn=b1+b2+bn=
(1-
)+
(
-
)++
(
-
)=
(1-
)=
. (14分)
| 1 |
| 4 |
∴a1=1.(2分)
∵Sn=
| 1 |
| 4 |
∴Sn-1=
| 1 |
| 4 |
①-②,得an=Sn-Sn-1=
| 1 |
| 4 |
| 1 |
| 4 |
整理得,(an+an-1)(an-an-1-2)=0,(5分)
∵an>0
∴an+an-1>0.
∴an-an-1-2=0,即an-an-1=2(n≥2).(7分)
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.(9分)
(Ⅱ)∵bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=b1+b2+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
练习册系列答案
相关题目