搜索
题目内容
在四面体PABC中,各棱长均为2,M为棱AB的中点,则异面直线PA和CM所成角的余弦值为______.
试题答案
相关练习册答案
如图,取PB中点N,连接CM、CN、MN.
∠CMN为PA与CM所成的角(或所成角的补角),
又∵PA=2,则CM=
3
,MN=1,
CN=
3
,由余弦定理得:
∴cos∠CMN=
3
6
.
故答案为:
3
6
练习册系列答案
名校金典课堂系列答案
指南针高分必备系列答案
育才金典系列答案
智慧树同步讲练测系列答案
小学互动课堂同步训练系列答案
期末精华系列答案
轻松夺冠轻松课堂系列答案
顶尖课课练系列答案
快乐练练吧青海人民出版社系列答案
优质课堂系列答案
相关题目
在四面体PABC中,各棱长均为2,M为棱AB的中点,则异面直线PA和CM所成角的余弦值为
.
在四面体PABC中,已知
∠APB=∠BPC=∠CPA=
π
2
,且各棱长的和为
2
+1
,则这个四面体体积的最大值是
.
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.
(Ⅰ)求证:DE∥平面BCP;
(Ⅱ)求证:四边形DEFG为矩形;
(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
如图,在四面体PABC中,点D,E,F,分别是棱AP,AC,BC的中点.
(1)若G为PB的中点,且PC⊥AB,求证:四边形DEFG为矩形;
(2)过D,E,F的平面与PB交于G,试确定四边形DEFG的形状?并说明理由?
(2012•广州一模)如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA、AC、CB、BP的中点.
(1)求证:D、E、F、G四点共面;
(2)求证:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,
PC=
2
,求四面体PABC的体积.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案