题目内容

0x1,a0a≠1,试比较|loga(1x)||loga(1+x)|的大小

答案:
解析:

解法一:作差法

|loga(1-x)|-|loga(1+x)|=| |-||

=(|lg(1-x)|-|lg(1+x)|)

∵0<x<1,∴0<1-x<1<1+x

∴上式=-[(lg(1-x)+lg(1+x)]=-·lg(1-x2)

由0<x<1,得,lg(1-x2)<0,∴-·lg(1-x2)>0,

∴|loga(1-x)|>|loga(1+x)|

解法二:作商法

=|log(1x)(1+x)|

∵0<x<1,∴0<1-x<1+x

∴|log(1x)(1+x)|=-log(1x)(1+x)=log(1x)

由0<x<1,∴1+x>1,0<1-x2<1

∴0<(1-x)(1+x)<1,

>1-x>0

∴0<log(1x) <log(1x)(1-x)=1

∴|loga(1-x)|>|loga(1+x)|

解法三:平方后比较大小

∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]

=loga(1-x2)·loga

=·lg(1-x2)·lg

∵0<x<1,∴0<1-x2</span><1,0<<1

∴lg(1-x2)<0,lg<0

∴loga2(1-x)>loga2(1+x)

即|loga(1-x)|>|loga(1+x)|

解法四:分类讨论去掉绝对值

a>1时,

|loga(1-x)|-|loga(1+x)|

=-loga(1-x)-loga(1+x)

=-loga(1-x2)

∵0<1-x<1<1+x,∴0<1-x2<1

∴loga(1-x2)<0,∴-loga(1-x2)>0

当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0

∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0

∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网