题目内容
设Sn为数列{an}的前n项和,Sn=(-1)nan-
,n∈N*,则S1+S2+…+S100=
(
-1)
(
-1).
| 1 |
| 2n |
| 1 |
| 3 |
| 1 |
| 2100 |
| 1 |
| 3 |
| 1 |
| 2100 |
分析:由递推式求出数列的首项,当n≥2时分n为偶数和奇数求出an,代入S n=(-1)nan-
,n∈N*后分组,然后利用等比数列的前n项和公式求解.
| 1 |
| 2n |
解答:解:由Sn=(-1)nan-
,n∈N*,
当n=1时,a1=S1=(-1)1a1-
,a1=-
.
当n≥2时,an=Sn-Sn-1=(-1)nan-
-(-1)n-1+
,
即an=(-1)nan+(-1)nan-1+
.
若n为偶数,则an-1=-
(n≥2),
∴an=-
(n为正奇数);
若n为奇数,则an-1=-2an+
=(-2)•(-
)+
=
.
∴an=
(n为正偶数).
则-a1=-(-
)=
,a2=
,-a1+a2=2×
.
-a3=-(-
)=
,a4=
,-a3+a4=2×
.
…
-a99+a100=2×
.
∴S1+S2+…+S100=(-a1+a2)+(-a3+a4)+…+(-a99+a100)-(
+
+…+
)
=2(
+
+…+
)-(
+
+…+
)
=2•
-
=
(
-1).
故答案为:
(
-1).
| 1 |
| 2n |
当n=1时,a1=S1=(-1)1a1-
| 1 |
| 2 |
| 1 |
| 4 |
当n≥2时,an=Sn-Sn-1=(-1)nan-
| 1 |
| 2n |
| 1 |
| 2n-1 |
即an=(-1)nan+(-1)nan-1+
| 1 |
| 2n |
若n为偶数,则an-1=-
| 1 |
| 2n |
∴an=-
| 1 |
| 2n+1 |
若n为奇数,则an-1=-2an+
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n |
| 1 |
| 2n-1 |
∴an=
| 1 |
| 2n |
则-a1=-(-
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 22 |
-a3=-(-
| 1 |
| 24 |
| 1 |
| 24 |
| 1 |
| 24 |
| 1 |
| 24 |
…
-a99+a100=2×
| 1 |
| 2100 |
∴S1+S2+…+S100=(-a1+a2)+(-a3+a4)+…+(-a99+a100)-(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2100 |
=2(
| 1 |
| 4 |
| 1 |
| 16 |
| 1 |
| 2100 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2100 |
=2•
| ||||
1-
|
| ||||
1-
|
| 1 |
| 3 |
| 1 |
| 2100 |
故答案为:
| 1 |
| 3 |
| 1 |
| 2100 |
点评:本题考查了数列的和的求法,考查了分组求和,体现了分类讨论的数学思想方法,考查了学生的计算能力,是中档题.
练习册系列答案
相关题目