ÌâÄ¿ÄÚÈÝ
17£®£¨1£©¸ù¾ÝͼÏó£¬ÇóÒ»´Îº¯Êýy=kx+bµÄ½âÎöʽ£®
£¨2£©É蹫˾»ñµÃµÄÀûÈóΪSÔª£¨ÀûÈó=ÏúÊÛ×ܼÛ-³É±¾×ܼۣ»ÏúÊÛ×ܼÛ=ÏúÊÛµ¥¼Û¡ÁÏúÊÛÁ¿£¬³É±¾×ܼÛ=³É±¾µ¥¼Û¡ÁÏúÊÛÁ¿£©£®
¢ÙÊÔÓÃÏúÊÛµ¥¼Ûx±íʾÀûÈóS£»
¢ÚÊÔÎÊÏúÊÛµ¥¼Û¶¨Îª¶àÉÙʱ£¬¸Ã¹«Ë¾¿É»ñµÃ×î´óÀûÈó£¿×î´óÀûÈóÊǶàÉÙ£¿´ËʱµÄÏúÊÛÁ¿ÊǶàÉÙ£¿
·ÖÎö £¨1£©Ê×Ïȸù¾ÝÒ»´Îº¯Êýy=kx+bµÄ±í´ïʽ´úÈëÊýÖµ»¯¼ò£¬È»ºóÇó³ök£¬b²¢Çó³öÒ»´Îº¯Êý±í´ïʽ£»
£¨2£©¢Ùͨ¹ý£¨1£©Ö±½Óд³ösµÄ±í´ïʽ²¢»¯¼ò£»
¢Ú¸ù¾Ý¶þ´Îº¯ÊýÇóµÃ×îÖµ£®
½â´ð ½â£º£¨1£©ÓÉͼÏó¿ÉÖª£¬$\left\{\begin{array}{l}{40=60k+b}\\{30=70k+b}\end{array}\right.$£¬
½âµÃ£¬$\left\{\begin{array}{l}{k=-1}\\{b=100}\end{array}\right.$£¬
ËùÒÔy=-x+100£¨50¡Üx¡Ü80£©£»
£¨2£©¢ÙÓÉ£¨1£©
S=xy-50y
=£¨-x+100£©£¨x-50£©
=-x2+150x-5000£¬£¨50¡Üx¡Ü80£©£®
¢ÚÓÉ¢Ù¿ÉÖª£¬S=-£¨x-75£©2+625£¬
ÆäͼÏ󿪿ÚÏòÏ£¬¶Ô³ÆÖáΪx=75£¬
ËùÒÔµ±x=75ʱ£¬Smax=625£®
¼´¸Ã¹«Ë¾¿É»ñµÃµÄ×î´óëÀûÈóΪ625Ôª£¬
´ËʱÏàÓ¦µÄÏúÊÛµ¥¼ÛΪ75Ôª/¼þ£®
µãÆÀ ±¾Ì⿼²éº¯ÊýÄ£Ð͵ÄÓ¦Óã¬ÒÔ¼°Ò»´Îº¯Êý£¬¶þ´Îº¯ÊýµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®ÒÑÖªf£¨2£©=-$\frac{4}{3}$£¬f¡ä£¨2£©=-1£¬Ôò$\underset{lim}{x¡ú2}$$\frac{3f£¨x£©+2x}{x-2}$µÄÖµÊÇ£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | -1 | D£® | -2 |
5£®Ô²$¦Ñ=2sin£¨¦È+\frac{¦Ð}{4}£©$µÄÔ²ÐÄ×ø±êÊÇ£¨¡¡¡¡£©
| A£® | $£¨{1£¬\frac{¦Ð}{4}}£©$ | B£® | $£¨{\frac{1}{2}£¬\frac{¦Ð}{4}}£©$ | C£® | $£¨{\sqrt{2}£¬\frac{¦Ð}{4}}£©$ | D£® | $£¨{2£¬\frac{¦Ð}{4}}£©$ |
12£®´Ó³¤¶È·Ö±ðΪ2£¬3£¬4£¬5µÄÏß¶ÎÖÐÈÎÈ¡ÈýÌõ£¬ÔòÒÔÕâÈýÌõÏß¶ÎΪ±ß¿ÉÒÔ¹¹³ÉÈý½ÇÐεĸÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | $\frac{3}{4}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{2}{3}$ |