题目内容
已知函数f(x)=x3+ax2+bx+a2(a,b∈R)(1)若函数f(x)在x=1处有极值为10,求b的值;
(2)若对任意a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.
【答案】分析:(1)先对函数求导f'(x)=3x2+2ax+b,由题意可得f(1)=10,f′(1)=0,结合导数存在的条件可求
(2)解法一:f'(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立,构造关于a的函数F(a)=2xa+3x2+b≥0对任意a∈[-4,+∞),x∈[0,2]都成立,结合函数单调性可得F(a)min=F(-4)从而有b≥(-3x2+8x)max,
解法二:f'(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立,即b≥-3x2-2ax对任意的a∈[-4,+∞),x∈[0,2]都成立,即b≥(-3x2-2ax)max.构造函数
,结合二次函数的性质进行求解函数F(x)的最大值
解答:解:(1)f'(x)=3x2+2ax+b
则
…(5分)
当
时,f'(x)=3x2+8x-11,△=64+132>0,所以函数有极值点;
当
,所以函数无极值点;
则b的值为-11.…(7分)
(2)解法一:f'(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立
则F(a)=2xa+3x2+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立∵x≥0,F(a)在a∈[-4,+∞)单调递增或为常数函数
所以得F(a)min=F(-4)=-8x+3x2+b≥0对任意的x∈[0,2]恒成立,
即b≥(-3x2+8x)max,又
,当
时
,得
,所以 b的最小值为
. …(15分)
解法二:f'(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立
即b≥-3x2-2ax对任意的a∈[-4,+∞),x∈[0,2]都成立,
即b≥(-3x2-2ax)max.令
①当a≥0时,F(x)max=0,∴b≥0;
②当
.
又∵
,∴
.
综上,b的最小值为
.…(15分)
点评:本题主要考查了利用导数研究函数的极值,利用构造函数的思想把恒成立转化为求解函数的最值问题,要注意构造思想在解题中的应用.
(2)解法一:f'(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立,构造关于a的函数F(a)=2xa+3x2+b≥0对任意a∈[-4,+∞),x∈[0,2]都成立,结合函数单调性可得F(a)min=F(-4)从而有b≥(-3x2+8x)max,
解法二:f'(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立,即b≥-3x2-2ax对任意的a∈[-4,+∞),x∈[0,2]都成立,即b≥(-3x2-2ax)max.构造函数
解答:解:(1)f'(x)=3x2+2ax+b
则
当
当
则b的值为-11.…(7分)
(2)解法一:f'(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立
则F(a)=2xa+3x2+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立∵x≥0,F(a)在a∈[-4,+∞)单调递增或为常数函数
所以得F(a)min=F(-4)=-8x+3x2+b≥0对任意的x∈[0,2]恒成立,
即b≥(-3x2+8x)max,又
解法二:f'(x)=3x2+2ax+b≥0对任意的a∈[-4,+∞),x∈[0,2]都成立
即b≥-3x2-2ax对任意的a∈[-4,+∞),x∈[0,2]都成立,
即b≥(-3x2-2ax)max.令
①当a≥0时,F(x)max=0,∴b≥0;
②当
又∵
综上,b的最小值为
点评:本题主要考查了利用导数研究函数的极值,利用构造函数的思想把恒成立转化为求解函数的最值问题,要注意构造思想在解题中的应用.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|