题目内容
已知数列{an}中,a1=
,a2=
.当n≥2时,3an+1=4an-an-1(n∈N*)
(1)证明:{an+1-an}为等比数列;
(2)求数列{an}的通项;
(3)若数列{bn}满足bn=n•an,求{bn}的前n项和Sn.
| 2 |
| 3 |
| 8 |
| 9 |
(1)证明:{an+1-an}为等比数列;
(2)求数列{an}的通项;
(3)若数列{bn}满足bn=n•an,求{bn}的前n项和Sn.
(1)由题意,当n≥2,3an+1=4an-an-1?3an+1-3an=an-an-1
所以an+1-an=
(an-an-1),
所以{an+1-an}是以a2-a1=
为首项,
为公比的等比数列.
(2)由(1)得an+1-an=
(
)n-1,an-an-1=
(
)n-2…a2-a1=
(
)0
累加得an-a1=1-(
)n,得an=1-(
)n
(3)bn=n-
Sn=(1-
)+(2-
)+…+(n-
)
=(1+2+…+n)-(
+
+…+
)=-
+
+
所以an+1-an=
| 1 |
| 3 |
所以{an+1-an}是以a2-a1=
| 2 |
| 9 |
| 1 |
| 3 |
(2)由(1)得an+1-an=
| 2 |
| 9 |
| 1 |
| 3 |
| 2 |
| 9 |
| 1 |
| 3 |
| 2 |
| 9 |
| 1 |
| 3 |
累加得an-a1=1-(
| 1 |
| 3 |
| 1 |
| 3 |
(3)bn=n-
| n |
| 3n |
Sn=(1-
| 1 |
| 3 |
| 2 |
| 32 |
| n |
| 3n |
=(1+2+…+n)-(
| 1 |
| 3 |
| 2 |
| 32 |
| n |
| 3n |
| 3 |
| 4 |
| 2n+3 |
| 4•3n |
| n(n+1) |
| 2 |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|