题目内容
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
.
(Ⅰ)求满足
的概率;
(Ⅱ)设三条线段的长分别为
和5,求这三条线段能围成等腰三角形(含等边三角形)的概率.
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】试题分析:(Ⅰ)首先由a,b的值确定所有基本事件,由
可得到满足条件的点,求其比值可得到概率值;(Ⅱ)由等腰三角形分情况讨论可得到构成三角形的个数,从而求得相应的概率
试题解析:先后2次抛掷一枚骰子,将得到的点数分别记为
包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.………………………2分
(Ⅰ)由于
,
∴满足条件的情况只有
,或
两种情况. ……………4分
∴满足
的概率为
. …………………………………………5分
(Ⅱ)∵三角形的一边长为5,三条线段围成等腰三角形,
∴当
时,
,共1个基本事件;
当
时,
,共1个基本事件;
当
时,
,共2个基本事件;
当
时,
,共2个基本事件;
当
时,
,共6个基本事件;
当
时,
,共2个基本事件;
∴满足条件的基本事件共有1+1+2+2+6+2=14个.…………………………11分
∴三条线段能围成等腰三角形的概率为
.…………………………………12分
练习册系列答案
相关题目