题目内容
(2009•荆州模拟)已知函数f(x)=
(x>0),数列{an}满足a1=a>0,且an+1=f(an)(n∈N*).
(1)求函数y=f(x)的反函数;
(2)若数列{an}的前n项和为Sn,求证:Sn<2a.
(3)若a=1,求证:an>2-n.
| ||
| x |
(1)求函数y=f(x)的反函数;
(2)若数列{an}的前n项和为Sn,求证:Sn<2a.
(3)若a=1,求证:an>2-n.
分析:(1)令y=
,得yx+1=
,两边平方后可求出x,注意求出反函数的定义域;
(2)由an+1=f(an),得an=f-1(an+1),即an=
,由a1=a>0,可得0<an+1<1,从而可得an=
>2an+1,即
<
,据此对Sn=a1+a2+…+an进行放缩求和可得结论;
(3)由0<an+1<1,得an=
<
,则
>
-
,即
<
+1,由此可得
+1<2(
+1),从而推得
+1≤2n-1(
+1)=2n,分离出an可推得结论;
| ||
| x |
| x2+1 |
(2)由an+1=f(an),得an=f-1(an+1),即an=
| 2an+1 |
| 1-an+12 |
| 2an+1 |
| 1-an+12 |
| an+1 |
| an |
| 1 |
| 2 |
(3)由0<an+1<1,得an=
| 2an+1 |
| 1-an+12 |
| 2an+1 |
| 1-an+1 |
| 1 |
| an |
| 1 |
| 2an+1 |
| 1 |
| 2 |
| 1 |
| an+1 |
| 2 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
解答:解:(1)令y=
,得yx+1=
,平方得
y2x2+2yx+=x2,
∵x>0,∴x=2y+y2x,x=
,
∵x>0,∴y=
>0,
又x=
,∴0<y<1,
所以函数y=f(x)的反函数为f-1(x)=
(0<x<1);
(2)∵an+1=f(an),∴an=f-1(an+1),即an=
,
由a1=a>0,可得0<an+1<1,
故an=
>2an+1,
∴
<
,
∴Sn=a1+a2+…+an<a+
a+…+
a
=
=2a[1-(
)n]<2a;
(3)∵0<an+1<1,∴an=
<
,
∴
>
-
,即
<
+1,
∴
+1<2(
+1),
∴
+1≤2n-1(
+1)=2n,
∴an≥
>
=2-n.
| ||
| x |
| x2+1 |
y2x2+2yx+=x2,
∵x>0,∴x=2y+y2x,x=
| 2y |
| 1-y2 |
∵x>0,∴y=
| ||
| x |
又x=
| 2y |
| 1-y2 |
所以函数y=f(x)的反函数为f-1(x)=
| 2x |
| 1-x2 |
(2)∵an+1=f(an),∴an=f-1(an+1),即an=
| 2an+1 |
| 1-an+12 |
由a1=a>0,可得0<an+1<1,
故an=
| 2an+1 |
| 1-an+12 |
∴
| an+1 |
| an |
| 1 |
| 2 |
∴Sn=a1+a2+…+an<a+
| 1 |
| 2 |
| 1 |
| 2n-1 |
=
a[1-(
| ||
1-
|
| 1 |
| 2 |
(3)∵0<an+1<1,∴an=
| 2an+1 |
| 1-an+12 |
| 2an+1 |
| 1-an+1 |
∴
| 1 |
| an |
| 1 |
| 2an+1 |
| 1 |
| 2 |
| 1 |
| an+1 |
| 2 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| a1 |
∴an≥
| 1 |
| 2n-1 |
| 1 |
| 2n |
点评:本题考查数列与不等式的综合、数列与函数的综合,考查学生分析解决问题的能力,综合性强,难度大.
练习册系列答案
相关题目