题目内容
已知函数f(x)=x2-1(x≤0),数列{an}满足an=f-1(an-12)(n≥2)且a1=-1.
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项bn=
,{bn}的前n项之和为Sn,试比较Sn和
an的大小.
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项bn=
| 1 |
| an+1+an |
| 2 |
| 3 |
分析:(1)由f(x)=x2-1(x≤0),得f-1(x)=-
(x≥-1),由an=f-1(an-12),知an2=n,由此能求出数列{an}的通项公式.
(2)由bn=
=-
=-(
-
),知Sn=-[(
-1)+(
-
)+…+(
-
)=1-
,令Sn-
an=1-
+
>0,解得:n<
<6,由此能够比较Sn和
an的大小.
| x+1 |
(2)由bn=
| 1 |
| an+1+an |
| 1 | ||||
|
| n+1 |
| n |
| 2 |
| 3 |
| 2 |
| n+1 |
| n |
| n+1 |
| 2 |
| 3 |
| n+1 |
| 2 |
| 3 |
| n |
| 144 |
| 25 |
| 2 |
| 3 |
解答:解:(1)由f(x)=x2-1(x≤0),
得f-1(x)=-
(x≥-1),
又∵an=f-1(an-12)⇒an=-
(an≤-1,n≥2)⇒
-
=1,
所以{an2}是首项a12=1,公差为1的等差数列,
故an2=n,即an=-
.
(2)由(1)得bn=
=-
=-(
-
),
所以Sn=-[(
-1)+(
-
)+…+(
-
)=1-
,
令Sn-
an=1-
+
>0,
解得:n<
<6,
所以,当1≤n≤5时,Sn>
an;
当n≥6时,Sn<
an.
得f-1(x)=-
| x+1 |
又∵an=f-1(an-12)⇒an=-
|
| a | 2 n |
| a | 2 n-1 |
所以{an2}是首项a12=1,公差为1的等差数列,
故an2=n,即an=-
| n |
(2)由(1)得bn=
| 1 |
| an+1+an |
| 1 | ||||
|
| n+1 |
| n |
所以Sn=-[(
| 2 |
| 3 |
| 2 |
| n+1 |
| n |
| n+1 |
令Sn-
| 2 |
| 3 |
| n+1 |
| 2 |
| 3 |
| n |
解得:n<
| 144 |
| 25 |
所以,当1≤n≤5时,Sn>
| 2 |
| 3 |
当n≥6时,Sn<
| 2 |
| 3 |
点评:本题考查数列与不等式的综合,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|