题目内容
数列{xn}的通项xn=(-1)n+1,前n项和为Sn,则
=______.
| lim |
| n→∞ |
| S1+S2+…+Sn |
| n |
由于数列{xn}的通项xn=(-1)n+1,前n项和为Sn,
故当n为偶数时,Sn =0,故当n为奇数时,Sn =1.
∴当n为偶数时,
=
=
=
,
∴
=
=
.
当n为奇数时,
=
=
=
,
∴
=
=
.
故答案为:
.
故当n为偶数时,Sn =0,故当n为奇数时,Sn =1.
∴当n为偶数时,
| s1+s2+s3+…+sn |
| n |
| 1+0+1+0+…+1+0 |
| n |
| ||
| n |
| 1 |
| 2 |
∴
| lim |
| n→∞ |
| S1+S2+…+Sn |
| n |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
当n为奇数时,
| s1+s2+s3+…+sn |
| n |
| 1+0+1+0+…+1 |
| n |
| ||
| n |
| n+1 |
| 2n |
∴
| lim |
| n→∞ |
| S1+S2+…+Sn |
| n |
| lim |
| n→∞ |
| n+1 |
| 2n |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
练习册系列答案
相关题目