题目内容

数列{xn}的通项xn=(-1)n+1,前n项和为Sn,则
lim
n→∞
S1+S2+…+Sn 
n
=______.
由于数列{xn}的通项xn=(-1)n+1,前n项和为Sn
故当n为偶数时,Sn =0,故当n为奇数时,Sn =1.
∴当n为偶数时,
s1+s2+s3+…+sn
n
=
1+0+1+0+…+1+0
n
=
n
2
n
=
1
2

lim
n→∞
S1+S2+…+Sn
n
=
lim
n→∞
1
2
=
1
2

当n为奇数时,
s1+s2+s3+…+sn
n
=
1+0+1+0+…+1
n
=
n-1
2
+1
n
=
n+1
2n

lim
n→∞
S1+S2+…+Sn
n
=
lim
n→∞
n+1
2n
=
1
2

故答案为:
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网