题目内容
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2n(2n+2) |
分析:由
=
•(
-
),利用裂项相消法可将将式化为
[(
-
)+(
-
)+…+(
-
)],化简后可得答案.
| 1 |
| 2n(2n+2) |
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
解答:解:
+
+
+…+
=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
•
=
故选B
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2n(2n+2) |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2n |
| 1 |
| 2n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n+2 |
=
| 1 |
| 2 |
| n |
| 2n+2 |
=
| n |
| 4n+4 |
故选B
点评:本题考查的知识点是数列的求和,熟练掌握裂项相消法的适用范围及计算步骤是解答的关键.
练习册系列答案
相关题目