题目内容

设F为抛物线y=-
1
4
x2
的焦点,与抛物线相切于点P(-4,-4)的直线l与x轴的交点为Q,则∠PQF等于(  )
A、30°B、45°
C、60°D、90°
分析:先求出F的坐标,利用导数求直线l的斜率,点斜式写出直线l的方程,由此方程求出直线l与x轴的交点Q的坐标,计算kQF
的值,由斜率之积等于-1得到PQ⊥QF.
解答:解:易知F(0,-1),又y′=-
1
2
x,所以kPQ=2,所以,直线l的方程为y+4=2(x+4),
令y=0,得Q(-2,0),所以,kQF=
-1-0
0+2
=-
1
2
,所以PQ⊥QF,即∠PQF=90°,
故选 D.
点评:本题考查利用导数求直线的斜率、用点斜式写直线的方程,以及利用两直线垂直的条件判断两直线垂直.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网