题目内容

19.已知α∈(0,π),sinα+cosα=$\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求sin(2α+$\frac{π}{3}$)的值.

分析 (Ⅰ) 把已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,整理求出sinα-cosα的值;
(Ⅱ)由(Ⅰ)知sin2α=-$\frac{24}{25}$,cos2α=-$\frac{7}{25}$,即可求sin(2α+$\frac{π}{3}$)的值.

解答 解:(Ⅰ) 因为sinα+cosα=$\frac{1}{5}$,所以2sinαcosα=-$\frac{24}{25}$,…(2分)
所以α∈($\frac{π}{2}$,π),(sinα-cosα)2=$\frac{49}{25}$,
所以sinα-cosα=$\frac{7}{5}$.…(6分)
(Ⅱ)由(Ⅰ)知sin2α=-$\frac{24}{25}$,cos2α=-$\frac{7}{25}$…(9分)
所以sin(2α+$\frac{π}{3}$)=-$\frac{12}{25}$-$\frac{7\sqrt{3}}{50}$…(12分)

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网