题目内容
若复数z满足z(1+i)=1-i(i是虚数单位),求|z|和
.
| . |
| z |
∵z(1+i)=1-i
∴等式两边都乘以1-i,得(1+i)(1-i)z=(1-i)2
即2z=(1-i)2=1-2i+i2=-2i
∴z=-i,可得|z|=1,且
=i.
∴等式两边都乘以1-i,得(1+i)(1-i)z=(1-i)2
即2z=(1-i)2=1-2i+i2=-2i
∴z=-i,可得|z|=1,且
| . |
| z |
练习册系列答案
相关题目
若复数 z 满足z•(1+i)=1-i(i是虚数单位),则z的共轭复数
=( )
. |
| z |
| A、i | B、-i | C、1+i | D、1-i |
i是虚数单位,若复数z满足z(1+i)=1-i,则复数z的实部与虚部的和是( )
| A、0 | B、-1 | C、1 | D、2 |