题目内容
设函数f(x)=|x+1|+|x-a|(a>0).
(1)作出函数f(x)的图象;
(2)若不等式f(x)≥5的解集为(-∞,-2]∪[3,+∞),求a值.
(1)作出函数f(x)的图象;
(2)若不等式f(x)≥5的解集为(-∞,-2]∪[3,+∞),求a值.
分析:(1)f(x)=|x+1|+|x-a|=
,如图所示.
(2)由题设知:|x+1|+|x-a|≥5,在同一坐标系中作出函数y=5的图象,当x=-2或3时,f(x)=5,且a+1<5即a<4,由f(-2)=5 求得 a 的值.
|
(2)由题设知:|x+1|+|x-a|≥5,在同一坐标系中作出函数y=5的图象,当x=-2或3时,f(x)=5,且a+1<5即a<4,由f(-2)=5 求得 a 的值.
解答:解:(1)f(x)=|x+1|+|x-a|=
,
函数f(x)如图所示.
(2)由题设知:|x+1|+|x-a|≥5,
如图,在同一坐标系中作出函数y=5的图象
(如图所示)
又解集为(-∞,-2]∪[3,+∞).
由题设知,当x=-2或3时,f(x)=5
且a+1<5即a<4,
由f(-2)=-2(-2)-1+a=5得:a=2.
|
函数f(x)如图所示.
(2)由题设知:|x+1|+|x-a|≥5,
如图,在同一坐标系中作出函数y=5的图象
(如图所示)
又解集为(-∞,-2]∪[3,+∞).
由题设知,当x=-2或3时,f(x)=5
且a+1<5即a<4,
由f(-2)=-2(-2)-1+a=5得:a=2.
点评:本题考查绝对值不等式的解法,函数图象的特征,体现了数形结合的数学思想,画出函数f(x)的图象,是解题的关键.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|