题目内容
数列{an}是等差数列,a1=f(x+1),a2=0,a3=f(x-1)其中f(x)=x2-4x+2,数列{an}前n项和存在最小值.
(1)求通项公式an;
(2)若bn=
,cn=
(
-
),(n≥3,n∈N+)求证:bn>cn.
(1)求通项公式an;
(2)若bn=
| 1 |
| f(an+5)+1 |
| 1 |
| 2 |
| 1 | ||
|
| 1 | ||
|
分析:(1)a1=f(x+1)=x2-2x-1,a2=f(x-1)=x2-6x+7由{an}为等差数列,能够求出通项公式an.
(2)由an=2n-4,知anbn=
=
=
(
-
)>0,再由cn=
(
-
)<0,能够证明bn>cn.
(2)由an=2n-4,知anbn=
| 1 |
| f(an+5)+1 |
| 1 |
| f(2n+1)+1 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 2 |
| 1 | ||
|
| 1 | ||
|
解答:(1)解:a1=f(x+1)=x2-2x-1,
a2=f(x-1)=x2-6x+7,
由{an}为等差数列,
得2a2=a1+a3
∴2x2-8x+6=0,
∴x=1或x=3,
x=1时a1=-2a2=0,d=2>0符合题意,
∴an=2n-4x=3时a1=2a2=0,d=-2,舍去
∴an=2n-4.
(2)证明:由(1)知an=2n-4,
从而若bn=
=
=
=
=
=
(
-
)>0,
cn=
(
-
)<0,
∴bn>cn.
a2=f(x-1)=x2-6x+7,
由{an}为等差数列,
得2a2=a1+a3
∴2x2-8x+6=0,
∴x=1或x=3,
x=1时a1=-2a2=0,d=2>0符合题意,
∴an=2n-4x=3时a1=2a2=0,d=-2,舍去
∴an=2n-4.
(2)证明:由(1)知an=2n-4,
从而若bn=
| 1 |
| f(an+5)+1 |
| 1 |
| f(2n+1)+1 |
=
| 1 |
| (2n+1)2-4(2n+1)+2+1 |
=
| 1 |
| 4n2-4n |
| 1 |
| 4n(n-1) |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
cn=
| 1 |
| 2 |
| 1 | ||
|
| 1 | ||
|
∴bn>cn.
点评:本题考查数列的通项公式的求法和不等式的证明,解题时要认真审题,注意数列与函数和数列与不等式的综合运用,合理运用等价转化思想解题.
练习册系列答案
相关题目