题目内容
选做题:坐标系与参数方程已知直线l经过点P(2,3),倾斜角α=
(Ⅰ)写出直线l的参数方程.
(Ⅱ)设l与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之和.
【答案】分析:(1)根据直线的参数方程的特征及参数的几何意义,直接写出直线的参数方程.
(2)设点A,B的坐标分别为
,
,把直线L的参数方程代入圆的方程x2+y2=4整理得到
①,由根与系数的关系
可得
,由t的几何意义可知|PA|+|PB|=|t1|+|t2|=-(t1+t2),从而求得结果.
解答:解:(1)由于过点(a,b) 倾斜角为α 的直线的参数方程为
,
∵直线l经过点P(2,3),倾斜角α=
,故直线的参数方程是
.…(5分)
(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t2,则点A,B的坐标分别为
,
.
把直线L的参数方程代入圆的方程x2+y2=4整理得到
①,…(8分)
因为t1和t2是方程①的解,从而
,
由t的几何意义可知|PA|+|PB|=
. …(10分)
点评:本题主要考查直线的参数方程,以及直线的参数方程中参数的几何意义,直线和圆的位置关系的应用,属于基础题.
(2)设点A,B的坐标分别为
可得
解答:解:(1)由于过点(a,b) 倾斜角为α 的直线的参数方程为
∵直线l经过点P(2,3),倾斜角α=
(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t2,则点A,B的坐标分别为
把直线L的参数方程代入圆的方程x2+y2=4整理得到
因为t1和t2是方程①的解,从而
由t的几何意义可知|PA|+|PB|=
点评:本题主要考查直线的参数方程,以及直线的参数方程中参数的几何意义,直线和圆的位置关系的应用,属于基础题.
练习册系列答案
相关题目