题目内容
18.在平面直角坐标系中,方程|x|+|y|=4所表示的曲线是以(0,4),(4,0),(0,-4),(-4,0)为顶点的正方形.分析 去掉绝对值,可得方程|x|+|y|=4的曲线围成的封闭图形.
解答 解:x≥0,y≥0方程为x+y=4;x≥0,y≤0方程为x-y=4;x≤0,y≥0方程为-x+y=4;x≤0,y≤0方程为-x-y=4,
∴方程|x|+|y|=4的曲线围成的封闭图形是一个以(0,4),(4,0),(0,-4),(-4,0)为顶点的正方形,
故答案为:以(0,4),(4,0),(0,-4),(-4,0)为顶点的正方形.
点评 本题考查的知识点是曲线与方程,分析出几何体的形状是解答的关键,难度中档.
练习册系列答案
相关题目
8.根据上海高考改革方案,2017年,高中生可从思想政治、历史、地理、物理、化学、生命科学6门学业考试科目中选3门参加等级性考试,并且这3门学业考试科目等级考试成绩将这算,计入高考总分,上海37所本科高校,从目前公布的1096个专业(类)的选考科目老看,学生选考物理可以满足1070个专业选科要求,覆盖率97.63%;选考化学可以满足992个专业选科要求,覆盖率为90.51%;选考生命科学可以满足877个专业选科要求,覆盖率为80.02%,地理、历史、思想政治的覆盖率分别为64.05%、63.5%、62.14%,为了进一步调查学生选考的意向,某机构对本市两所学校各100名高一新生进行了选考调查,且规定从6门学业考试中每一位学生只能选择1门,结果如下:
(1)分别计算甲乙两校选考理科专业的频率,若将该频率视为概率,求从乙校高一新生中随机选取3人,其中恰有2人选考理科专业的概率;
(2)若从甲校高一新生中任取1人,从乙校高一新生中任取2人,记3人中选考理科专业的人数为随机变量X,求X的分布列和数学期望.
| 物理 | 化学 | 生命科学 | 政治 | 历史 | 地理 | |
| 甲校 | 35 | 20 | 15 | 7 | 8 | 15 |
| 乙校 | 30 | 14 | 16 | 11 | 14 | 15 |
(2)若从甲校高一新生中任取1人,从乙校高一新生中任取2人,记3人中选考理科专业的人数为随机变量X,求X的分布列和数学期望.
6.
一个半球与一个正四棱锥组成的几何体的正视图与俯视图如图所示,其中正视图中的等腰三角形的腰长为$\sqrt{3}$.若正四棱锥的顶点均在该半球所在球的球面上,则此球的半径为( )
| A. | 2 | B. | $\frac{3}{2}$$\sqrt{2}$ | C. | $\frac{12}{5}$$\sqrt{5}$ | D. | $\sqrt{6}$ |