题目内容
设数列{an}(n∈N*)的前n项的和为Sn,满足a1=1,
-
=
(n∈N*).
(1)求证:Sn=(2-
)an;
(2)求数列{an}的通项公式.
| Sn+1 |
| an+1 |
| Sn |
| an |
| 1 |
| 2n |
(1)求证:Sn=(2-
| 1 |
| 2n-1 |
(2)求数列{an}的通项公式.
(1)证明:数列{an}(n∈N*)的前n项的和为Sn,满足a1=1,
-
=
(n∈N*).
所以
-
=
,
-
=
;
-
=
;
…
-
=
;
将n-1个式子相加可得:
-
=
+
+
+…+
,
所以
=1+
+
+
+…+
=
=2-
;
∴Sn=(2-
)an;
(2)因为Sn=(2-
)an;
所以Sn-1=(2-
)an-1;(n≥2)
所以an=(2-
)an-(2-
)an-1;可得
an =an-1,
因为a2=2,当n=1时,满足数列{an}是等比数列公比为2.
所以an=2n-1.
| Sn+1 |
| an+1 |
| Sn |
| an |
| 1 |
| 2n |
所以
| S2 |
| a2 |
| S1 |
| a1 |
| 1 |
| 2 |
| S3 |
| a3 |
| S2 |
| a2 |
| 1 |
| 4 |
| S4 |
| a4 |
| S3 |
| a3 |
| 1 |
| 8 |
…
| Sn |
| an |
| Sn-1 |
| an-1 |
| 1 |
| 2n-1 |
将n-1个式子相加可得:
| Sn |
| an |
| S1 |
| a1 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
所以
| Sn |
| an |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
1-
| ||
1-
|
| 1 |
| 2n-1 |
∴Sn=(2-
| 1 |
| 2n-1 |
(2)因为Sn=(2-
| 1 |
| 2n-1 |
所以Sn-1=(2-
| 1 |
| 2n-2 |
所以an=(2-
| 1 |
| 2n-1 |
| 1 |
| 2n-2 |
| 1 |
| 2 |
因为a2=2,当n=1时,满足数列{an}是等比数列公比为2.
所以an=2n-1.
练习册系列答案
相关题目