题目内容
【题目】如图,在四棱锥
中,底面是正方形
平面
且
.
![]()
(1)求证:
;
(2)求异面直线
与
所成角的大小;
(3)求二面角
的大小.
【答案】(1)证明见解析;(2)45°;(3)120°
【解析】
(1)建立空间直角坐标系,计算
0即可证明垂直关系;
(2)利用向量求出
,即可得到异面直线所成角;
(3)求出两个半平面的法向量,根据法向量所成角的大小求二面角的大小.
(1)由题:底面是正方形
,
平面
,
所以
两两互相垂直,且![]()
以D为原点,
分别为
轴正方向建立空间直角坐标系,设
=1,
![]()
所以![]()
,所以
,即
;
(2)
,
所以
夹角为135°,即异面直线
与
所成角45°
(3)设平面
的法向量
,
则
,取
,则
,
设平面
的法向量
,![]()
则
,取
,则
,
所以
,
即法向量所成角为60°
所以二面角
的大小为120°
【题目】某冰糖橙,甜橙的一种,云南著名特产,以味甜皮薄著称。该橙按照等级可分为四类:珍品、特级、优级和一级(每箱5kg).某采购商打算采购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:
等级 | 珍品 | 特级 | 优级 | 一级 |
箱数 | 40 | 30 | 10 | 20 |
售价(元/kg) | 36 | 30 | 24 | 18 |
(1)试计算样本中的100箱不同等级橙子的平均价格;
(2)按照分层抽样的方法,从这100个样本中抽取10箱,试计算各等级抽到的箱数;
(3)若在(2)抽取的特级品和一级品的箱子上均编上号放在一起再从中抽取2箱,求抽取的2箱中两种等级均有的概率
【题目】某冰糖橙,甜橙的一种,云南著名特产,以味甜皮薄著称。该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5kg),某采购商打算订购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:
等级 | 珍品 | 特级 | 优级 | 一级 |
箱数 | 40 | 30 | 10 | 20 |
(1)若将频率改为概率,从这100箱橙子中有放回地随机抽取4箱,求恰好抽到2箱是一级品的概率:
(2)利用样本估计总体,庄园老板提出两种购销方案供采购商参考:
方案一:不分等级卖出,价格为27元/kg;
方案二:分等级卖出,分等级的橙子价格如下:
等级 | 珍品 | 特级 | 优级 | 一级 |
售价(元/kg) | 36 | 30 | 24 | 18 |
从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这100箱橙子中抽取10箱,再从抽取的10箱中随机抽取3箱,X表示抽取的是珍品等级,求x的分布列及数学期望E(X).
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据
(
=1,2,…,6),如表所示:
试销单价 | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量 | q | 84 | 83 | 80 | 75 | 68 |
已知
.
(Ⅰ)求出
的值;
(Ⅱ)已知变量
具有线性相关关系,求产品销量
(件)关于试销单价
(元)的线性回归方程
;
(参考公式:线性回归方程中
,
的最小二乘估计分别为
,
)