题目内容
已知,则 .
某小区想利用一矩形空地建造市民健身广场,设计时决定保留空地边上的一个水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一条直线交于,从而得到五边形的市民健身广场.
(Ⅰ)假设,试将五边形的面积表示为的函数,并注明函数的定义域;
(Ⅱ)问:应如何设计,可使市民健身广场的面积最大?并求出健身广场的最大面积.
(本题满分14分)已知函数
(1)将写成的形式,并求其图象对称中心的横坐标;
(2)如果的三边满足,且边所对的角为,试求的范围及此时函数的值域.
(本小题满分16分)已知函数的图像过点,且在处的切线的斜率为,(为正整数)
(Ⅰ)求函数的解析式;
(Ⅱ)若数列满足:,,令,求数列的通项公式;
(Ⅲ)对于(Ⅱ)中的数列,令 ,求数列的前项的和.
给出下列四个命题
(1)命题“,”的否定是“,”;
(2)若只有一个零点,则;
(3)命题“若且,则”的否命题为“若且,则”;
(4)对于任意实数,有,,且当时,,, 则当时,;
(5)在中,“”是“”的充要条件
其中正确的命题有 .填所有正确的序号)
设集合,,则 = .
(Ⅲ)对于(Ⅱ)中的数列,令 ,求数列的前项的和.
某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是
(A) (B) (C) (D)