题目内容

8.已知a∈($\frac{π}{2}$,π,),cosa=-$\frac{3}{5}$,则tan$\frac{a}{2}$的值为2:

分析 利用倍角公式及同角三角函数基本关系式可得cosa=$\frac{1-ta{n}^{2}\frac{α}{2}}{1+ta{n}^{2}\frac{α}{2}}$=-$\frac{3}{5}$,结合角的范围即可得解.

解答 解:∵a∈($\frac{π}{2}$,π),
∴$\frac{a}{2}$∈($\frac{π}{4}$,$\frac{π}{2}$),tan$\frac{a}{2}$>0,
∵cosa=$\frac{1-ta{n}^{2}\frac{α}{2}}{1+ta{n}^{2}\frac{α}{2}}$=-$\frac{3}{5}$,整理可得:tan2$\frac{α}{2}$=4,
∴解得:tan$\frac{a}{2}$=2.
故答案为:2.

点评 本题主要考查了倍角公式及同角三角函数基本关系式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网