题目内容

已知cosα=-
4
5
,α∈(π,
2
),tanβ=-
1
3
,β∈(
π
2
,π)
,求cos(α+β).
分析:先根据α和β的范围利用同角三角函数的基本关系求得sinα,sinβ和cosβ的值,进而利用余弦的两角和公式求得答案.
解答:解:∵α∈(π,
2
),β∈(
π
2
,π)

∴sinα=-
1-
16
25
=-
3
5
,sinβ=
10
10
,cosβ=-
3
10
10

∴cos(α+β)=(-
4
5
)×(-
3
10
10
)-(-
3
5
)×
10
10
=
3
10
10
点评:本题主要考查了两角和公式和同角三角函数的基本关系.解题的时候要注意根据角的范围确定三角函数值的正负.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网