题目内容
已知函数f(x)=x2+bx+c,则“c<0”是“?x0∈R,使f(x0)<0”的
- A.充分而不必要条件
- B.必要而不充分条件
- C.充分必要条件
- D.既不充分也不必要条件
A
分析:通过c<0,判断函数对应的不等式有解,说明充分性;不等式有解,说明c的值不一定小于0,判断必要性即可.
解答:函数f(x)=x2+bx+c,则“c<0”时,函数与x 有两个交点,所以“?x0∈R,使f(x0)<0成立.
而“?x0∈R,使f(x0)<0”即x2+bx+c<0,△=b2-4c>0,即b2>4c,c不一定有c<0,
综上函数f(x)=x2+bx+c,则“c<0”是“?x0∈R,使f(x0)<0”的充分不必要条件;
故选A.
点评:本题考查充要条件的判断与应用,二次函数与二次不等式的解集的关系,考查计算能力.
分析:通过c<0,判断函数对应的不等式有解,说明充分性;不等式有解,说明c的值不一定小于0,判断必要性即可.
解答:函数f(x)=x2+bx+c,则“c<0”时,函数与x 有两个交点,所以“?x0∈R,使f(x0)<0成立.
而“?x0∈R,使f(x0)<0”即x2+bx+c<0,△=b2-4c>0,即b2>4c,c不一定有c<0,
综上函数f(x)=x2+bx+c,则“c<0”是“?x0∈R,使f(x0)<0”的充分不必要条件;
故选A.
点评:本题考查充要条件的判断与应用,二次函数与二次不等式的解集的关系,考查计算能力.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|