题目内容
(本小题14分)
函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,
并且当x>0时,f(x)>1.
(1)求证:f(x)是R上的增函数;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.
(本小题14分)
解 (1)设x1,x2∈R,且x1<x2,
则x2-x1>0,
∴f(x2-x1)>1………………………………………………………2分
f(x2)-f(x1)=f((x2-x1)+x1)-f(x1)
=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0……………………………5分.
∴f(x2)>f(x1).
即f(x)是R上的增函数. …………………………………………7分.
(2)∵f(4)=f(2+2)=f(2)+f(2)-1=5,
∴f(2)=3,……………………………………………………10分 ∴原不等式可化为f(3m2-m-2)<f(2),
∵f(x)是R上的增函数,∴3m2-m-2<2, ………………………12分
解得-1<m<
,故解集为(-1,
). ………………………14分