题目内容
设函数f(x)=acos2(ωx)-| 3 |
的最小正周期为π(a≠0,ω>0)
(1)求ω的值;
(2)若f(x)的定义域为[-
| π |
| 3 |
| π |
| 6 |
分析:(1)先利用降幂公式和二倍角公式、辅助角公式对函数进行化简变形,由周期求出ω即可.
(2)由(1)f(x)=acos(2x+
),由x的范围,先求出2x+
的范围,结合余弦函数的图象用整体思想求出cos(2x+
)的范围,再由值域为[-1,5],求a,b的值,进一步求单调区间即可.
(2)由(1)f(x)=acos(2x+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
解答:解:f(x)=
a[1+cos(2ωx)]-
asin(2ωx)+b=acos(2ωx+
)+
+b
(1)T=π=
,ω=1
(2)由(1)f(x)=acos(2x+
)
∵x∈[-
,
]∴2x+
∈[-
,
]
∴cos(2x+
)∈[-
,1]
a>0有a=4,b=-1
且f(x)增区间[-
,-
],减区间为[-
,
],
a<0有a=-4,b=5
且f(x)增区间[-
,
],减区间为[-
,-
]
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
| a |
| 2 |
(1)T=π=
| 2π |
| 2ω |
(2)由(1)f(x)=acos(2x+
| π |
| 3 |
∵x∈[-
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
∴cos(2x+
| π |
| 3 |
| 1 |
| 2 |
a>0有a=4,b=-1
且f(x)增区间[-
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
a<0有a=-4,b=5
且f(x)增区间[-
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
点评:本题考查三角变换、三角函数性质:周期性、定义域、值域、及单调区间等知识,难度不大.
练习册系列答案
相关题目