题目内容
【题目】(5分)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )
A. 1升 B.
升 C.
升 D.
升
【答案】B
【解析】试题设出竹子自上而下各节的容积且为等差数列,根据上面4节的容积共3升,下面3节的容积共4升列出关于首项和公差的方程,联立即可求出首项和公差,根据求出的首项和公差,利用等差数列的通项公式即可求出第5节的容积.
解:设竹子自上而下各节的容积分别为:a1,a2,…,a9,且为等差数列,
根据题意得:a1+a2+a3+a4=3,a7+a8+a9=4,
即4a1+6d=3①,3a1+21d=4②,②×4﹣①×3得:66d=7,解得d=
,
把d=
代入①得:a1=
,
则a5=
+
(5﹣1)=
.
故选B
【题目】某单位员工
人参加“学雷锋”志愿活动,按年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.
![]()
(1)下表是年龄的频率分布表,求正整数
的值;
区间 |
|
|
|
|
|
人数 |
|
|
|
|
|
(2)现在要从年龄较小的第
组中用分层抽样的方法抽取
人,年龄在第
组抽取的员工的人数分别是多少?
(3)在(2)的前提下,从这
人中随机抽取
人参加社区宣传交流活动,求至少有
人年龄在第
组的概率.
【题目】如图,平面四边形
中,
,
是
,
中点,
,
,
,将
沿对角线
折起至
,使平面
平面
,则四面体
中,下列结论不正确的是( )
![]()
A.
平面![]()
B. 异面直线
与
所成的角为![]()
C. 异面直线
与
所成的角为![]()
D. 直线
与平面
所成的角为![]()
【题目】某高校在2019年的自主招生笔试成绩(满分200分)中,随机抽取100名考生的成绩,按此成绩分成五组,得到如下的频率分布表:
组号 | 分组 | 频数 | 频率 |
第一组 |
| 15 |
|
第二组 |
| 25 | 0.25 |
第三组 |
| 30 | 0.3 |
第四组 |
|
|
|
第五组 |
| 10 | 0.1 |
(1)求频率分布表中
,
,
的值;
(2)估计笔试成绩的平均数及中位数(同一组中的数据用该组区间的中点值作代表);(精确到0.1)
(3)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生参加面试,用简单随机抽样方法从6人中抽取2人作为正、副小组长,求“抽取的2人为同一组”的概率.